
Selling Training Data∗

Jingmin Huang† Wei Zhao‡, Renjie Zhong§

Abstract

In this paper, we develop a framework to analyze the design and price of supplemental

training dataset. A monopolistic seller versions training datasets and associated tariffs to screen

data buyers with different private datasets. The predictive power of private datasets in different

states determine horizontal preference of the buyer while the overall predictive power determines

vertical preference. The designer differentiates both the horizontal and vertical preference to

trade-off the reduction of information rent and allocation efficiency. In the cases of binary

situation, we provide an explicit construction of the four different schemes in the optimal menu.

In the general case, two-tiered pricing mechanism is the optimal, where the buyers are sold a

partially informative data in the first tier and a fully informative data in the second tier.
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1 Introduction

With increasing amounts of available dataset and rapidly advanced data processing techniques, data

has played a central role in many economically significant situations. Data provides predictions

and help decision makers to refine and optimize their actions, thus consequently improving her

expected welfare. As digital technology advances and data collaboration becomes more frequent,

businesses often integrate their existing data with supplemental dataset purchased from information

intermediaries to improve prediction. Or they deliver the market data they collect of special use

cases to an information broker, who in turn provides specialized decision support in combination

with their more powerful data resources.

In this paper, we develop a framework to analyze the sale of supplemental dataset. In general,

the pricing of these datasets often varies based on factors such as the size and specificity of the

dataset, the level of data granularity, the intended use of the data, and the volume of data being

purchased. Since the data buyer does not form a posterior belief based on its own data before

purchasing, the seller’s screening mechanism can only discriminate on different original datasets,

which becomes the noteworthy difference from information selling.
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We formalize this problem in the classic Bayesian decision-theoretic model pioneered by Black-

well and the framework of mechanism design and information design. A single data buyer faces a

decision problem under uncertainty, and a information seller maximizes his profits by designing the

optimal menu of data with prices per buyer type. The value of data is measured by its incremental

value in the decision problem.

The data buyer owns a private dataset containing information about a state variable that is

relevant to his decision. Although the data buyer does not use the private dataset in advance,

since the superimposed use of the data (transformed into an experiment) is equivalent to sequential

use, the designer faces data buyers who have multiple beliefs, but cannot sell to their different

beliefs separately. The revelation principle of the data buyer’s private data tells that the posterior

it produces is associated with the recommended actions. The key to selling training data is to

first consider the beneficence of these recommended actions, which reflects the predictive power

under different terminal decisions. When each state corresponds to a unique optimal action, for

the private dataset, as if it is possible to distinguish the ability to predict each state.

The predictive power of the private dataset may be partial and different across states, which

is private to the data buyer and unknown to the data seller. The predictive power of buyer‘s

private dataset of some state determine his willingness to pay for any supplemental information of

such state, resulting the differences in horizontal preference. And the overall predictive power also

determine the vertical preference for more informative dataset.

Thus, from the perspective of the data seller, there are many possible types of data buyer with

private multi-dimensional preference. Here we employ the recommendation mechanism, where the

designer recommends an action profile to complement different possible prediction of the dataset in

every state. The designer should finely design the information products to (i) utilize the differences

in horizontal and vertical preference across types to maximize her revenue, and (ii) correlate the

decision-relevant information for different states with the private predictive power in different states

of the same type buyer.

Before giving an overview of our results, we emphasize three key attributes of data complicating

the design of data sale mechanism. In the design of data selling mechanism, the seller can utilize

two screening toolkits to achieve revenue-maximization: she allocates the data and decides its

associated tariff to differentiate the menu, which resembles the quality and price control in classic

one-dimensional mechanism design problem. However, it is not standard as it seems, three key

attributes of data complicates this design problem, making it in nature a joint design of multi-

dimensional allocation and information

1. Data provides different predictive power across states and is inherently multi-dimensional

goods, thus making both the preference and the allocation goods multi-dimensional.

2. The recommendation mechanism employed in the data selling problem introduces the obedi-

ence/responsiveness constraints.

3. The complementarity and substitution between data differ, which means that even for the
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same data, the utility function form may vary from buyers with different private data, thus

distorting the analysis of mutual IC conditions.

We first investigate the structural properties of the optimal menu to reduce the dimensions

and simplify the design problem. We first test the implementability of the predictions and restrict

to those implementable predictions when combining with the private dataset. Then we apply the

splitting lemma and demonstrate the structural welfare properties in data design. With structural

welfare properties, we further show that the optimality imposes restrictions on the distortions in

the data. Both the existence of the fully informative experiment and the constrained distortion to

the experiments (”non-dispersed”) in the optimal menu are guaranteed.

In the situation with binary type and binary state, we explicitly construct the four selling

schemes in the optimal menu. The designer can utilize the multi-dimensional preference to imple-

ment product differentiation and price discrimination to extract surplus as much as possible. A

direct device is the interaction between the the horizontal prediction power and the vertical pre-

diction power of the two types. If the two-dimensional prediction power of the low type1 is much

stronger than or similar to the high type, then the “no-haggling” result for monopoly pricing in

Riley and Zeckhauser (1983) applies. In other cases, the designer can always extract the valuation

of the low type by selling dataset with partial informative prediction in another dimension when

some dimension is no-haggling, and extract the information rent of the high type by exploiting the

horizontal differences and versioning the dataset. And the designer trade-off the extraction of the

efficient value of low type and the information rent of high type.

In the general case with continuous type in binary state, our main finding is that the optimal

mechanism is simple but more flexible than the standard outcome of one-dimensional screening,

even with the same predictive power in some dimension. In particular, it suffices to offer the buyers

two-tiered pricing in the optimal selling policy: the types are partitioned into two tiers according

to their predictive power of their private dataset; in the first tier, all types are sold a dataset with

partially informative prediction, where the dimension with random predictive power is sold a null

while the dimension with the same predictive power is sold a partially informative experiment, and

charged a relatively low price; in the second tier, all types are sold a dataset with fully informative

prediction, and charged a relatively high price. The threshold of the two tiers is determined similar

to the monopolist pricing. By versioning the data for sale, the designer applies the no-haggling in

one dimension and differentiation in another dimension.

From a methodological perspective, experiment as a private type in our framework gives rise to

multi-dimensional private preference and the design of multi-dimensional allocation (of the accuracy

of predictions). Moreover, the selection of payoff function form of an arbitrary experiment for

some type is endogenous and thus type-dependent, which makes the anlaysis of IC conditions type

pair-dependent. With the experiment as private type, we apply the splitting lemma to derive

the implications in welfare of common prior in this setting. To analyze the type pair-dependent

IC, we utilize a novel approach by defining two functions representing the tightness of IC and

1Here the low type is the one whose private dataset provides more accurate prediction, thus lowering his willingness
to pay.
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responsiveness and exploit their structural properties. And then we transform all these conditions

into tractable constraints in a standard optimization problem. Finally, we apply the novel solution

technique based on a general extension of Carathéodory’s theorem found in Kang (2023), which has

many applications in recent papers in mechanism design and information design 2 to solve it. These

techniques may be useful in other settings with type pair-dependent mutual IC or joint design of

information and mechanism.

Related Literature. Our work is related to the emerging literature on designing information

and data selling mechanism to imperfectly informed decision makers. Previous literature mainly

focus on the design and price of append information (Admati and Pfleiderer (1986); Admati and

Pfleiderer (1990); Babaioff et al. (2012); Bergemann and Bonatti (2015); Bergemann et al. (2018))3.

There are also some papers focusing on the setting where the agent can endogenize the information

acquisition beyond purchasing additional information. Li (2022) discovers that endogenous infor-

mation distorts the incentives, and reduces the revenue of the information seller. Our paper focuses

on the price and design of training data. A key difference lies in that the varied and systematic

way of combining the predictions of data broadens the scope for versioning and differentiating,

compared to the information selling. The combination of predictions from datasets is under the

minimization of statistical error, and thus endogenous and varying from the buyers.

Our research also contributes to the multi-dimensional mechanism design4. . Compared to

standard multi-dimensional screening and bundling (Adams and Yellen (1976); McAfee et al. (1989);

Armstrong and Rochet (1999); Carroll (2017); Haghpanah and Hartline (2021); Yang (2022); Yang

(2023)), the design of data selling mechanism is the joint design of multi-dimensional goods allo-

cation under multi-dimensional preference and information. Thus both the interactions between

the dimensions and the introduction of responsiveness constraints jointly complicates the analysis.

We explore the trade-off between the constraints and identify the optimal structure of the con-

straints using some new-defined functionals, and then transform it into a standard one-dimensional

screening problem, providing a novel approach to tackling the joint design of information and

multi-dimensional allocation problem.

The most relevant works to ours are Bergemann et al. (2018) and Bergemann et al. (2022). The

designers all pose a contract at the ex ante stage to screen the buyer with private information/data.

In Bergemann et al. (2018) and Bergemann et al. (2022), they consider the selling of input data, like

cookie and purchase history, to buyers with private input data. In their setting, data buyers have

private information before contracting. For example, the decision makers (like lenders, advertisers,

and health care providers in Bergemann et al. (2018)‘s examples) may have prior interactions with

the subjects (like the borrower, specific consumers, patient’s family), which is relevant to their

decisions. While in our setting, buyers with private dataset purchase training data to complement

2see, for example, Fuchs and Skrzypacz (2015); Bergemann et al. (2018); Loertscher and Muir (2023); Dworczak
and Muir (2024) in mechanism design and Le Treust and Tomala (2019); Doval and Skreta (2022)in information
design, see Dworczak and Muir (2024) for more details

3See Bergemann and Bonatti (2019) for a more comprehensive survey.
4Our analysis also intersects with the mechanism design concerning the strategic disclosure of pricing information,

as explored by Lizzeri (1999); Ottaviani and Prat (2001); Bergemann and Pesendorfer (2007); Eső and Szentes (2007);
Krähmer and Strausz (2015). These studies delve into the ex ante design of a disclosure rule and a pricing policy.
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her private one, in order to train algorithms to predict outcomes and recognize patterns. For

example, the purchased medical data is used for training supervised learning models to predict

disease diagnosis or drug efficacy. The purchased financial data is used for the stock price prediction

or credit scoring. The buyers does not have specific knowledge relevant to their decisions before

contracting and appending the training data.

From a technical perspective, in Bergemann et al. (2018), the buyer receivers some private

interim belief purchases the information structure. In other words, the designer allocates multi-

dimensional goods to screen buyers with one-dimensional but incongruent preference order. In

binary state, the design problem is indeed one-dimensional. While in our setting, the private type

of the buyer is Blackwell experiment. And the preference, resulting from the predictive power

of the data in different dimensions, is in nature multi-dimensional. In Bergemann et al. (2018),

they propose some structural properties of the optimal menu to reduce the dimensions. We derive

similar conclusions by proving an almost different approach , because in our setting, the designer

should recommend an action profile to all possible interim beliefs while their designer only need to

recommend one action to some posterior. Moreover, their model can be reduced to a standard one-

dimensional allocation under one-dimensional preference with some additional constraint . While

in our setting, even fixing one dimensional preference, it can not be reduced to one-dimensional

allocation due to the interaction between ex-ante responsiveness and incentive compatibility.

And finally, although both apply the general extension of Carathéodory’s theorem5, we derive

different structures of the optimal menu. In Bergemann et al. (2018), the responsiveness constraint,

joint with the standard monotonicity constraint, constitute the constraint of the allocation goods.

Therefore, they give an upper bound of the cardinality of the optimal menu. However, in our

setting, the responsiveness constraint and the monotonicity constraint respectively constrains the

allocation in two dimension. Therefore, we derive a sharper prediction of the structure of the

optimal menu.

Outline. The rest of the paper is organized as follows. Section 2 presents the setup of the data

selling mechanism design and further explores the structural property in the data selling mechanism

design. Section 3 report our results in the binary situation. In Section 4, we generalize the binary

situation and explore the structure of the optimal mechanism. In Section 5, we state the direction

of our future work. The proof of Lemmas and Theorems can be found in the Appendix.

5In their work, they apply the Fundamental Theorem of Linear Programming by discretion and then extend the
conclusion to a continuous form by considering the a converging (in distribution) discrete distribution, which is in
fact equivalent to ours.
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2 Basic Model

2.1 Model and Notation

Decision Under Uncertainty. A single data buyer with private statistical experiment faces

a decision problem under uncertainty. The state of world ω is drawn from a finite set Ω =

{ω1, . . . , ωi, . . . , ωI}. The data buyer chooses an action a from a finite set A = {a1, . . . , aj , . . . , aJ} .

The ex post utility is denoted by u (ωi, aj) ≜ uij ∈ R+. Following , we assume I ≤ J and uii > uij ,

∀j ̸= i. These two assumptions capture the idea that the action space is at least as rich as the state

space and that for every state ωi, there is a unique action (labeled ai) that maximizes the decision

maker’s utility in that state.

Denote U = {uij}I×J the I × J payoff matrix in the decision problem. A useful special case

is one in which the data buyer faces binary ex post payoffs in each state, i.e., he seeks to match

the state and the action. In that case, the utility function u (ωi, aj) is then given by u (ωi, aj) ≜
I[i=j] · ui, and ui ≜ uii. This formulation assumes that, in each state, the data buyer assigns the

same value to each wrong action. This value is normalized to 0 because adding a state-dependent

translation to the utility function does not affect preferences over actions. Under this assumption, it

is without loss of generality to assume that the sets of actions and states have the same cardinality:

|A| = |Ω| = I = J .

Table 1: Payoff Matrix
u a1 · · · aJ
ω1 u11 · · · u1J
...

...
. . .

...
ωI uI1 · · · uIJ

Table 2: Matching Utility
u a1 aI
ω1 1 0
...

. . .

ωI 0 1

Experiment. The private statistical experiment E′
n = (S, π′

n) (equivalently, an informa-

tion structure) is the type of the data buyer67, where players share the same signal space S′ =

{s′1, ..., s′K}, and the likelihood functions of signal π′
nik ≡ Pr[sk|ωi] are type dependent. Note that∑K

k=1 π
′
ik = 1 for all i. From the perspective of the data seller, these private experiments are

distributed according to a distribution F (n) ∈ ∆(N), which we take as a primitive of our model.

In line with the interpretation of selling supplemental information, the beliefs can be generated

from a common prior and privately observed signals after the state is realized. Thus, suppose there

is a common prior µ ∈ ∆(Ω). The decision maker privately observes a signal and every signal

induces a posterior. Indeed, we can assume that agent‘s type is the distribution of posteriors, i.e.

{µn1, ..., µnK} with Pr(µnk) =
∑I

i=1 µiπ
′
nik for all k ∈ 1, ...,K, where µnk ∈ ∆(Ω) and µnki ≡

µnk(ωi) =
µiπ

′
nik∑I

i′=1 µi′π
′
ni′k

.

6An interesting point is that, in the sense of conclusions, this setup is nearly equivalent to the setup where {κi}i∈I

is the private type of the buyer, where κi is the matching utility in state ωi, i.e. κi = uii and κi ∈ [0, 1].
7We can also define the measure of predictive power of the private dataset as the private type (as in the section

3. Here we use more standard setup to directly apply the splitting lemma to derive some other properties in the
following parts.
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The data buyer seeks to augment his initial private information by obtaining additional infor-

mation from the data seller in order to improve the quality of his decision making. The seller designs

statistical experiments E = (S, π) with prices to maximize his profits, where S = {s1, ..., sR} and

πir ≡ Pr[sr|ωi].

We assume throughout that the realization of the buyer’s private signal s′k and that of the

signal sr from any experiment E sold by the seller are independent, conditional on the state ω. In

other words, the buyer and the seller draw their information from independent sources.

Value of Experiement.We first describe the value of the buyer’s initial information and

then determine the incremental value of an experiment E = (S, π). Type n data buyer’s decision

problem is given by conditioning on accepting signal s′k, choosing an optimal action a (s′k | En) that

maximizes the expected utility (of states) given the posterior, i.e.,

a (s′k | En) ∈ argmax
aj∈A

{
∑I

i=1 µnkiuij} and u(s′k | En) ≜ max
j

{
∑I

i=1 µnkiuij}.

The expected utility of type n is therefore given by

Un ≜
∑K

k=1 Pr(µnk)u(s
′
k | En) =

∑K
k=1maxj

{∑I
i=1 µiπ

′
nikuij

}
.

By contrast, if the data buyer has access to an experiment E = (S, π), he observes the private

signal s′k and the bought signal realization sr ∈ S, updates his beliefs, and then chooses an appro-

priate action. Consequently, for any signal sr ∈ S that occurs with strictly positive probability πir,

an action that maximizes the expected utility of type n is given by

a(sr, s
′
k|En) ∈ argmax

aj∈A

{∑I
i=1

(
µnkiπir∑I

i′=1 µnki′πi′r

)
uij

}

which leads to the following conditional expected utility:

u(sr, s
′
k|En) ≜ max

j

{∑I
i=1

(
µnkiπir∑I

i′=1 µnki′πi′r

)
uij

}
.

Integrating over all signal realizations sk and subtracting the value of prior information, the

(net) value of an experiment E for type n is given by V (E,n), where

V (E, n) ≜ u(E, n)− Un =

K∑
k=1

(

R∑
r=1

max
j

{
I∑

i=1

µiπ
′
nikπ

′
iruij

}
−max

j

{
I∑

i=1

µiπ
′
nikuij

}
). (1)

Mechanism. By the revelation principle, the menu of experiments can be described as M =

{En, tn}n∈N , where En is the experiment for type n and tn ∈ R+ is its associated tariff. Our goal

is to characterize the revenue-maximizing menu for the seller. The timing of the game is as follows:
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1. the seller posts a mechanism M

2. the type n buyer chooses an experiment En and pays the corresponding price tn

3. the true state ω is realized

4. the buyer receive two signals, one from his private experiment E′
n, another from the experi-

ment En she bought, and she chooses an action a

5. payoffs are realized

2.2 Joint Design of Mechanism and Information

The seller’s choice of a revenue-maximizing menu of experiments may involve, in principle, designing

one experiment per buyer type. We denote the indirect net utility for the truth-telling agent by

Vn ≜ V (E, n)− t(n).

The seller’s problem consists of maximizing the expected transfers

max{E(n),t(n)}
∫
n∈N t(n)dF (n)

subject to incentive-compatibility constraints (IC)

Vn ≥ V (E(n′), n)− t(n′), ∀n, n′ ∈ N ,

and individual-rationality constraints (IR)

Vn ≥ 0, ∀n ∈ N.

To simplify the seller‘s problem, we can further reduce the set of menus of experiments to

a smaller and very tractable class, thus canceling out the max operator in V (E,n), the value

of arbitrary experiment for some type n (as in 1). We can without loss of generality restrict our

attention to the mechanisms such that if the buyer reports truthfully, following the recommendation

from the seller maximizes her expected payoff. In the data selling problem where the private type

of buyer is statistical experiment, each experiment entails a type-dependent mapping from signals

into action recommendation profiles.

E(n) is responsive if every signal s ∈ S leads type n to a different optimal action vector.

Precisely speaking, by constructing an onto mapping from the signal to the recommendation out-

come, we can w.l.o.g represent the signal as a recommendation profile for all possible posteriors, i.e

sr = (ar1, ..., arK), where ark ∈ A. An experiment E is responsive for some agent if and only if the

optimal action for this agent conditional on accepting sr and private signal s′k is ark for all sr ∈ S

and s′k ∈ S′, and, in particular

a(sr, s
′
k|En) = ark, ∀s′k ∈ S′, sr ∈ S.
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And a responsive menu is a menu in which experiment En is responsive for agent n for all n.

A direct observation is that the maximal cardinality of a responsive menu is JK .

Importantly, responsiveness is only required for every experiment E(n) and for the correspond-

ing type n. In other words, we do not require this condition to hold if signals in E(n) are evaluated

by a different type n′ ̸= n. Finally, we define an outcome of a menu as the joint distribution of

states, actions, and monetary transfers resulting from every type’s optimal choice of experiment

and subsequent choice of action.

Lemma 1 establishes that it is without loss of generality to restrict attention to responsive

menus—direct revelation mechanisms in which every experiment E(n) is responsive8.

Lemma 1 (Revelation Principle in Mechanism with Blackwell Experiment). The outcome of every

menu M = {E , t} can be attained by a responsive menu.

We can merge the signals inducing the same recommendation profile to derive a responsive

menu and the merging is implementable and strictly better for the designer. The responsive agent‘s

valuation for the merged experiment is unchanged, while other agents‘ valuation decrease by Black-

well Theorem because the merging is a garbling. So both IC and IR constraints are relaxed and

the designer can get weakly better.

The implementability of recommendation lies in the likelihood ratios between different states

of the signals.To illustrate this point, suppose that there exist two posteriors for one agent. The

posterior 1 believes that relative to ω1, ω2 is more likely to be realized, and converse for posterior

2. It is difficult to implement a signal to induce posterior 1 choosing a2 while posterior 2 choosing

a1. Therefore we can further reduce the cardinality of the signal space.

Notice that in binary state situation, we can reorder the index of posteriors as below:

µn11

µn12
≥ µn21

µn22
≥ ... ≥ µnK1

µnK2
for all n

So we can only implement recommendation profile sr in which srj = a1 implies that sri = a1
for all i ≤ j. Denote the set of these recommendation profiles as A∗

Lemma 2 (Implementable Signals in Binary State). In binary state, the support of the recommen-

dation profiles in a responsive experiment is a subset of A∗

Relabel the recommendation profile such that a1 = (a1, a1, ..., a1), a2 = (a1, a1, ..., a2), ...,

aK+1 = (a2, a2, ..., a2). So A∗ = {a1, ..., aK+1}. A direct observation is that the cardinality of

recommendation profile reduces to |A∗| = K + 1.

Formally, under matching utility and binary state, the responsive/obedience constraints of

signal k for agent n is9

8The proof is motivated form Bergemann et al. (2018) and we modify it to apply in our setting.
9We can also assume general payoff matrix to get similar results. The assumption of matching utility is only to

omit some unnecessary algebra.
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µn(K+1−k)2

µn(K+1−k)1
≤ π1k

π2k
≤ µn(K+2−k)2

µn(K+2−k)1
for all k = 1, 2, ...,K + 1

where µn02

µn01
= 0 and

µn(K+1)2

µn(K+1)1
= +∞

2.3 Structural Property of the Optimal Menu

After the test of implementability and responsiveness, we have successfully reduce the dimensions

of the parameters for design. Now we further explore the structural property of the experiments in

the optimal menu to reduce more dimensions.

It is immediate that we can restrict our attention to the menu where the fully informative

experiment E lies in. If not, choose the one charged the highest fee and replace its menu with the

fully informative experiment and a weakly higher fee10.

Lemma 3 (Existence of the Fully Informative Experiment). Every outcome of the optimal menu

can be attained by one menu where E lies in the optimal menu.

Define recommendation profile ak1 Pareto dominant the ak2 in state ωi as a
k1 ≳ωi a

k2 , which

means that in state i, ak1 recommends at least one more posteriors to choose the optimal action ai
who are recommended to choose aj in ak2 , without changing recommendations to other posteriors.

Then, a1 ≳ω1 a2 ≳ω1 ... ≳ω1 aK+1 and aK+1 ≳ω2 aK ≳ω2 .. ≳ω2 a1.

For i = 1, ..., I and j1, j2 ∈ {1, ...,K+1}, j1 ̸= j2, denote a
j1 i→ aj2 and E(aj1

i→ aj2) = (π′, S)

as the adjustment of E = (π, S) as followed: π′
ij1

= πij1 − δ, π′
ij2

= πij2 + δ and others unchanged.

Considering the adjustment in responsive experiment E for agent n, denote the valuation change

under aj1
i→ aj2(i = 1, ..., I), ∆(aj1

i→ aj2 | E,n) ≜ V (E(aj1
i→aj2 ),n)−V (E,n)

δ .11

Lemma 4 (Properties of Structural Welfare Adjustment). For any responsive experiment E for

type n, we have the following structural welfare adjustment properties:

1. ∆(aj1
i→ aj2 | E,n) = −∆(aj2

i→ aj1 | E,n)

2. the following adjustment always brings constant welfare change

(a) ∆(aK+1 1→ a1 | E,n) = µ1 and ∆(a1
2→ aK+1 | E,n) = µ2

(b) there exists k⋆ such that ∆(aK+1 1→ ak
∗+1 | E,n) + ∆(a1

2→ ak
∗ | E,n) = un

Statement 1 is obvious. Adjustments in statement 2 is to ”restore” the valuation with fully

informative experiment/without information. The second outcome of the adjustment in statement

2 stems from the common prior and the splitting lemma. In fact, both the two adjustments can be

viewed as the systematic minimization of the statistical error, resulting in constant decrease in the

disutility.

10The proof is from Bergemann et al. (2018).
11In fact, the adjustment is dependent on δ, for simplicity, we omit it because it is useless for our analysis (or

assume it is finitely small)
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An experiment is non-dispersed if and only if π1K+1 = 0 and π21 = 0. A menu is shared-

responsive if and only if all experiments in the menu are responsive for all types.

Table 3: Non-Dispersed Experiment
a1 · · · aK+1

ω1 π11 · · · 0
ω2 0 · · · π2K+1

Table 4: Experiment to Design
E (a1, a1) (a1, a2) (a2, a2)

ω1 1− π2 π2 0
ω2 0 π1 1− π1

The structural welfare adjustment can further guarantee the non-dispersed property of the

experiments in the optimal responsive menu.

Lemma 5 (Structures of the Optimal Experiment). In the optimal experiment.

1. Every experiment is non-dispersed

2. With binary state, every outcome of optimal menu can be attained by a shared responsive one.

With binary state,the seller designs the likelihood function of recommendation profiles a1 =

(a1, a1), a
2 = (a1, a2), a

3 = (a2, a2). With the structural properties above, we can transform the

seller‘s problem into an explicit constrained optimization problem.

3 Binary Situation

Considering the situation with binary state, binary action, binary type, common prior µ = (12 ,
1
2)

12

and uniform type distribution Pr(type i) = 1
2 , i = 1, 2. To simplify the notation, denote the two

type as:

µ =

(
1

2
,
1

2

)
=

µ2 − 1
2

µ1 + µ2 − 1
(µ1, 1− µ1) +

µ1 − 1
2

µ1 + µ2 − 1
(1− µ2, µ2)

=
µ′
2 − 1

2

µ′
1 + µ′

2 − 1

(
µ′
1, 1− µ′

1

)
+

µ′
1 − 1

2

µ′
1 + µ′

2 − 1

(
1− µ′

2, µ
′
2

)
where (µ1, 1− µ1) and (1− µ2, µ2) are the posteriors of the type 1, and (µ′

1, 1− µ′
1) and (1− µ′

2, µ
′
2)

are of the type 2. Suppose µ1, µ
′
1, µ2, µ

′
2 >

1
2 without loss of generality by the splitting lemma.

Denote (θ1, θ2) as the portion of the total information value obtained from the posterior

(µ1, 1− µ1) and posterior (1− µ2, µ2), respectively. More specifically, the multiplier of the mar-

ket share of the corresponding posterior and the valuation for the fully informative one of that

posterior, i.e.

12The main conclusions can be naturally extended to µ = (p, 1− p) with more algebra.
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θ1 =
µ2 − 1

2

µ1 + µ2 − 1︸ ︷︷ ︸
market share

(1− µ1)︸ ︷︷ ︸
V (E,(µ1,1−µ1))

, θ2 =

(
µ1 − 1

2

)
µ1 + µ2 − 1︸ ︷︷ ︸
market share

(1− µ2)︸ ︷︷ ︸
V (E,(1−µ2,µ2))

and similarly define (θ′1, θ
′
2) associated with the type 2 buyer.

We call θ1 the predictive power on state ω1 of the private data owned by a data buyer. The

rationale is that θ1 measures the incremental decision value for the fully information under the

posterior where the data owner is optimal in believing the state is ω1 and choosing a1 without

the information. This predictive power is measured in terms of the information value for decision-

making, rather than a statistical prediction accuracy. Compared with (µ1, µ2), (θ1, θ2) more directly

reflects the buyer’s valuation and preference for information. We use (θ1, θ2) and (θ′1, θ
′
2) to replace

(µ1, µ2) and (µ′
1, µ

′
2) as the private type of the buyer since they are well-corresponded,

We also suppose that the type 1 is the H-igh type and type 2 is the L-ow type in the sense

of the valuation for the fully informative experiment, i.e. V (E, 1) ⩾ V (E, 2), or θ1 + θ2 ⩾ θ′1 + θ′2
where E is the fully informative experiment

Table 5: Fully Informative Experiment

E (a1, a1) (a1, a2) (a2, a2)

ω1 1 0 0
ω2 0 0 1

Table 6: Experiment to Design

E (a1, a1) (a1, a2) (a2, a2)

ω1 1− π2 π2 0
ω2 0 π1 1− π1

The private training data set can be understood as the predictability of the two state. The

higher predictability for state ωi, the lower the willingness to pay for state i. Thus we can explicitly

figure out the interactions between multi-dimensional preference in this screening problem using

θi and θ′i. The vertical valuation, i.e. valuation for the fully informative experiment as a whole,

can be represented as V (E, 1) = θ1 + θ2, while the horizontal valuation θ1 and θ2 represents the

valuation for the fully informative experiment of the two posteriors.

By the existence of the fully informative experiment and the results above, the designer only

needs to design the responsive one for low type, which is also responsive for the high type.

The valuation for this experiment is

V (E, 1) =
1− π1

2
+

1− π2
2

+
(µ2 − 1

2)µ1π1

µ1 + µ2 − 1
+

(µ1 − 1
2)µ2π2

µ1 + µ2 − 1
−

(
µ2 − 1

2

)
µ1

µ1 + µ2 − 1
−

(
µ1 − 1

2

)
µ2

µ1 + µ2 − 1

= θ1 + θ2 − θ1π1 − θ2π2,

V (E, 2) = θ′1 + θ′2 − θ′1π1 − θ′2π2.

Notice that the value of the experiment is linear with respect to the predictive power. From the

perspective of marginal experiment for different posterior realizations, π12 misleads the (1−µ2, µ2)

and π22 misleads the (µ1, 1− µ1) (as in Table 10). They are damage goods only for one dimension

of the horizontal preference, motivating us to relabel the coordinate of the likelihood function as

in Table 6. Therefore, from the expression of experiment value, the predictive power happens to

12



become a quality preference for harmful misleading signals in the designed information matrix.

The responsiveness constraint is:

k1 ≡ max
{

θ2
1
2
−θ1

θ′2
1
2
−θ′1

}
= max

{
1−µ2

µ2
,
1−µ′

2
µ′
2

}
⩽ π1

π2
⩽ min

{
µ1

1−µ1
,

µ′
1

1−µ′
1

}
= min

{ 1
2
−θ2
θ1

,
1
2
−θ′2
θ′1

}
≡ k2.

Moreover, the responsiveness constraint of E for type 1 buyer (similar for type 2 buyer) can

also be represented as a linear production possibility set of the damage goods in the following

reduced form:

θ1π1 + θ2π2 ≤ min{1
2π1,

1
2π2}.

The economic interpretations behind the three components in responsiveness is about statis-

tical error. θ1π1 + θ2π2,
1
2π1, and

1
2π2 are respectively the loss of error when choosing (a1, a2),

(a1, a1) and (a2, a2) when receiving the recommendation (a1, a2). Responsiveness requires that

combining the prediction of the private dataset Et1 and the purchased dataset E1, the prediction

of the purchased dataset always bring the minimized statistical error and would be obeyed.

Now the designer‘s problem is:

max
E,tH ,tL

1
2 (tH + tL)

s.t.

V (E, 1)− tH ⩾ 0 (IR-H)

V (E, 2)− tL ⩾ 0 (IR-L)

V (E, 1)− tH ⩾ V (E, 1)− tL (IC-H)

V (E, 2)− tL ⩾ V (E, 2)− tH (IC-L)

k1 ⩽
π1
π2

⩽ k2 (Responsiveness)

It is not hard to see that tH ≥ V (E, 2) ≥ tL considering the optimality of the mechanism.

Thus, the IC-L is always not binding. Then we can immediately derive that IR-L is binding. Let

T = tH + V (E, 2)− V (E, 1), the designer‘s problem can be reduced as

max
E,T

T

s.t.

T ⩽ θ′1 (1− π1) + θ′2 (1− π2) (IR-H)

T ⩽ (2θ′1 − θ1) (1− π1) + (2θ′2 − θ2) (1− π2) (IC-H)

max
{

θ2
1
2
−θ1

θ′2
1
2
−θ′1

}
= k1 ⩽

π1
π2

⩽ k2 = min
{ 1

2
−θ2
θ1

,
1
2
−θ′2
θ′1

}
(Responsiveness)
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Define

∆ = RHS(IR-H)− RHS(IC-H) = (θ1 − θ′1)(1− π1) + (θ2 − θ′2)(1− π2) (2)

where ∆ measures the information rent for the H-type in this screening problem. Notice that when

the predictable power in two states of low type are both stronger than the ones of high type, i.e.

(θ1, θ2) > (θ′1, θ
′
2), the information rent can never be eliminated. Otherwise when there exists one

dimension where the predictive power of the low type is weaker than the high type, i.e. θ1 < θ′1
or θ2 < θ′2, the information rent can always be eliminated with proper allocation of (π1, π2)

13. In

this case, the optimal menu results in both IC-H and IR-H binding, which provokes novel trade-off

in mechanism design.

It is also clear that the basic trade-off in the data selling problem is the extraction of infor-

mation rent versus the extraction of efficient low type valuation, in the the reduced form of the

designer‘ problem. the designer allocates the damage goods π1 and π2 to screen the low type, which

also results in the disutility of statistical error and reduces the extraction of the efficient valuation

of low type.

Here we state the main result in the binary setting. As figure 1 shows, the optimal sell-

ing mechanism involves the interaction of vertical differences, internal horizontal differences and

external horizontal differences, resulting in four typically different information selling schemes.

Theorem 1 (Optimal Selling Mechanism). When low type (θ′1, θ
′
2) lies

1. in the zone I, the seller implements no discrimination policy, i.e. selling E to both types.

((π1, π2) = (0, 0), tH = tL = θ′1 + θ′2)

2. in the zone II14, the seller implements exclusive policy, i.e. only selling E to the high type.

((π1, π2) = (1, 1), tH = θ1 + θ2, tL = 0)

3. in the zone III-(i), the seller implements partial discrimination policy, i.e. selling E to type-H,

and a fixed experiment E to type-L. (∆ > 0,π3−i = 1, π1
π2

= ki, IR-(L) is binding)

4. in the zone IV-(i), the seller implements full discrimination policy, i.e. selling E to type-H,

and E to type-L. (∆ = 0, π1
π2

= ki, IR-(H) and IR-(L) are binding)

Proof. See the Appendix.

3.1 Economic Interpretations of Theorem 1

Zone I and II. In zone I and zone II, the optimal selling policy resembles the no-haggling result of

Riley and Zeckhauser (1983). In zone I, the data seller implements no discrimination policy, selling

13See details in the Appendix
14The coefficient of the boundary line is determined by the market share between the high type and the low type.

Here the same market share induces the 1
2
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Figure 1: Optimal Selling Schemes

fully informative experiment Ē to both types. While in zone II, the seller implements exclusive

policy and only sells Ē to high type15. Notice that in the two zones, both the horizontal and vertical

valuations of the low type are either similar to or much smaller than the high type (θ′1+θ′2 ≪ θ1+θ2
or θ′1 + θ′2 ≈ θ1 + θ2), so the two-dimensional preference can be approximately reduced to an one-

dimensional preference in these situations. We can therefore appeal to the no-haggling result of

Riley and Zeckhauser (1983) that establishes the optimality of an extremal policy. Such a policy

consists of either allocating the object (here, the information) with probability 1 (π1 = 0, π2 = 0,

tH = tL = θ′1 + θ′2) or not allocating it at all (π1 = 1, π2 = 1, tH = θ1 + θ2, tL = 0) .

Zone III. In zone III, the seller implements partial discrimination, selling E to type-H, and

a constant E to type-L, such that (IR-L),(IC-H),(Responsiveness) are binding. In zone III, one

valuation of the low type is much smaller than the high type while another is slightly smaller. The

designer can partially differentiate the low type one to (i) fully extract the valuation of the low

type and (ii) (incompletely) reduce the information rent of high type, i.e. ∆ > 0.

Explicitly speaking, in the zone III-1, the low type gets the experiment in the form of table 7,

where π∗
1 is a constant decided by the obedience constraint parameter k1. The sold experiment is

equivalent to sell the two ”marginal” experiments to the two posterior realizations in the form of

table 8.

In the dataset for the low type, the dimension with relatively strong predictive power of type-

15It is noteworthy that the zone II always exists and its measure is dependent on the market share between the
high type and the low type, which is different from traditional non-haggling result in binary situation.
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Table 7: Experiment for (θ′1, θ
′
2)

E (a1, a1) (a1, a2) (a2, a2)

ω1 0 1 0
ω2 0 π∗

1 1− π∗
1

Table 8: Marginal Experiment for θ′1, θ
′
2

θ′1 a1 a2
ω1 1 0
ω2 π∗

1 1− π∗
1

θ′2 a1 a2
ω1 0 1
ω2 0 1

L is sold null, and the weak one gets a partial informative experiment fully revealing one state.

Assuming that a seller can design information on two independent dimensions of predictive power,

then based on the predictions of zone I and II, the seller will sell information only to the high type

on the dimension where the buyer is more different, and sell complete information to both sides

on the dimension where the buyer is less different. However, such sales require the design of E

satisfying π1 = 0, π2 = 1, which violates the responsiveness conditions and makes recommendation

(a1, a2) infeasible. Constrained by the likelihood ratio when recommending different actions to two

posteriors, the seller sacrifices some extraction in the dimension with less difference, providing as

little information as possible to maintain buyer’s acceptance of the recommendation.

This interpretation raises the next question: why does the optimal menu is selected by reduc-

ing the information provided to the less diverse dimensions to meet the responsiveness condition,

but not by increasing the amount of information provided to the more diverse dimension, or a

combination of the two ways? We have proved that when the low type buyer has weaker predictive

ability in both dimensions, no matter how the experiment is designed, the high type buyer has a

positive information rent, i.e. ∆ > 0. This means that IC-H must be binding, and IR-H must be

not, so that only IC-H and responsiveness constraints limit the tariff that can be obtained from

high-type buyers. Responsiveness constraints determine the optimal ratio of π1 to π2, while IC-H

associates with the shadow price of π1 to π2 satisfying that ratio. Depending on whether the shadow

price negative or positive under given type parameters, the seller chooses to maximize or minimize,

respectively, (π1, π2) while maintaining the ratio, which results in two corresponding results: (π∗
1, 1)

and (0, 0).

Moreover, the boundary between zone I and III-1 characterizes the above trade-off. When

the dimensions with large difference in predictive power are relatively close, the high type itself

does not have much information rent, and seller efficiently extract the surplus of the low type by

reducing (π1, π2). On the contrary, when the dimension with large difference in predictive power

is not close enough, the information rent generated by the high type in this dimension is higher.

By increasing (π1, π2), the information is only sold to the low type in the dimension with small

difference, avoiding screening in the more diverse dimension, resulting in a significant decrease in

the information rent paid.

A more interesting point is that in the whole III-1, only one fixed experiment E is sold.

Naturally, E does not change with θ2, because sellers do not sell information to low types in

this dimension, but counterintuitively, the design of E does not change with respect to different

θ1. This result comes from the shared responsive property in Lemma 5. Because the high-type

has lower overall predictive power, it is more difficult to recommend (a1, a2), which means his
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responsiveness constraint is tighter. Therefore, it is essentially responsive constraint of the high

type that determines the selection of π1, causing it not to vary with the parameters of the lower

type. If the designer only considers the responsive conditions of the low type to determine a lower

π1, it will lead to the high type making decision (a1, a1) in facing the signal (a1, a2) when disguised

as the low type, which provides information for the posterior corresponding to θ2, thus increasing

the benefit of dishonesty. This results in paying higher information rents for high types and thus

less profits.

Zone IV. In zone IV, the seller implements full discrimination, selling Ē to type-H, and E to

type-L, which smoothly changes in this zone, such that (IR-L),(IC-H),(IR-H),(Responsiveness) is

binding. When one valuation of the low type is much smaller than the high type while another is

slightly higher. The designer can fully differentiate the low type one to (i) extract the valuation of

the low type in two dimensions and (ii) fully extract the information rent of high type.

Precisely speaking, the experiment sold to the low type is in the form of table 9, where π∗
1

and π∗
2 change smoothly in (θ′1, θ

′
2). The sold experiment is equivalent to sell the two ”marginal”

experiments to the two posterior realizations in the form of table 10.

Table 9: Experiment for (θ′1, θ
′
2)

(a1, a1) (a1, a2) (a2, a2)

ω1 1− π∗
2 π∗

2 0
ω2 0 π∗

1 1− π∗
1

Table 10: Marginal Experiment for θ′1, θ
′
2

θ′1 a1 a2
ω1 1 0
ω2 π∗

1 1− π∗
1

θ′2 a1 a2
ω1 1− π∗

2 π∗
2

ω2 0 1

Notice that two dimensions of the low type are both sold a partial informative experiment

fully revealing one state. Meanwhile, the amount of information provided by the designer increases

as the predictive power of the low type decreases in either dimensions. As before, the boundary

between zone IV and zone I also reflects the trade-off between extracting surplus from the low type

and reducing the information rent paid to the high type.

The most important intuition of zone IV is that it reflects the interaction of design screening

in the two dimensions of predictive power. As figure 2 shows, even with fixed θ′2, the posterior

corresponding to θ′2 would get sold more informatively as θ′1 increases. On the one hand, when

horizontally transitioning from zone III to zone IV, the optimal menu changes from selling no

information to this dimension to selling partial information. On the other hand, within zone IV,

the amount of information sold on this dimension also increases as the level of predictive power on

the other dimension decreases.

The reason for this interaction is that, the experiment designed by the seller will now result

in a positive or negative information rent for the high-type buyer, which never happen in one-

dimensional mechanism design problems. When the designer in zone IV continues to sell the

low-type buyer only the information on the dimension with less difference in predictive power, it

is noted that as now θ1 < θ′1, in this scheme which regresses to this one-dimension, the low-type

buyer becomes the “high type” instead. This results in tighter IR constraint than IC constraint

for the high-type, and thus the tariff that can be charged for high types are reduced. By moving
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Figure 2: Zone III versus Zone IV

the experiment designed for the lower types along the recommendation boundary to provide more

information in both dimensions, the unique experiment that makes IC-H and IR-H both binding

(i.e. the information rent is zero) could be found. This design maximized the surplus that could

be extracted from the high-type buyer.

In the design and price of information, Bergemann et al. (2018) also finds that the designer

can properly allocate the information products to weigh the (IC-H) and (IR-H) conditions and

make both of them binding. But the economic drivers behind ours are different from theirs. In

Bergemann et al. (2018), the private preference of the buyers is in nature one-dimensional but may

not be congruent in orders. However, in our setting, the private preference of the buyers is in nature

multi-dimensional.

To summarize, in the data selling mechanism, the designer can utilize the multi-dimensional

preference to implement product differentiation and price discrimination to extract surplus as much

as possible. A direct device is the interaction between the horizontal value ((θ1, θ2) and (θ′1, θ
′
2))

and vertical value (θ1+θ2 and θ′1+θ′2) of the two types. Moreover,due to multi-dimensional nature

of the problem, both the external and the internal differences in horizontal preference play a central

role in the design.

In fact, the responsiveness of the experiment implies that the designer designs a data with three

kinds of predictions: (i) state 1 prediction (ii) pooling prediction (iii) state 2 prediction. Only the

pooling prediction brings disutility from the statistical error when combining the predictions of the

private dataset. Therefore. the key for differentiated design and price discrimination lies in the

pooling prediction, which complements the private experiment in such way that both posteriors

adopt their default choices. And the external and the internal differences in horizontal preference

shape the the space for designing this prediction.
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Figure 3: Optimal Selling Schemes (General Case)

4 General Case

We now complete the analysis of the binary-action environment. The analysis of the binary situation

demonstrates that the selling data is in nature a multi-dimensional screening problem. To tackle

the multi-dimensional screening problem, we utilize our structural properties of welfare adjustments

to reduce the dimensions.

In the general case, we consider the private preference for data as (θ1, θ2), where θ1 = m is

a constant and θ2 = θ is a random variable with the support Θ =
[
θ, θ

]
=

[
0, 12 −m

]
16 and the

distribution is F (θ). Therefore the agent‘s private type is θ.

Notice that in this situation, the non-dispersed property still holds. Therefore the designer only

needs to design the {π1(θ), π2(θ)} for all θ ∈ Θ, satisfying the incentive compatibility, individual

rationality and responsiveness.

We begin by stating our main result in the general case, which characterizes the structure of

the optimal selling menu.

Table 11: Experiment for the First Tier

Ê (a1, a1) (a1, a2) (a2, a2)

ω1 0 1 0

ω2 0 θ∗

θ
1− θ∗

θ

Table 12: Experiment for the Second Tier
E (a1, a1) (a1, a2) (a2, a2)

ω1 1 0 0
ω2 0 0 1

Theorem 2 (The Optimality of the Cutoff Mechanism). The optimal selling mechanism is

1. (Eθ, tθ) = (E, tθ∗) for all for θ ∈
[
θ∗, θ

]
2. (Eθ, tθ) = (Ê, t̂) for θ ∈ [θ, θ∗), where π1 =

θ∗

θ
, π2 = 1

3. θ∗ ∈ argmaxθ θ
(
θ − 1

2F (θ)
)

As theorem 2 shows, the optimal mechanism takes a simple and economically interpretable

structure. As in figure 3, it suffices to offer the buyers two-tiered pricing in the optimal selling

16It will derive a symmetric conclusion in the converse case where θ1 is a r.v and θ2 is a constant.
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policy: the types are partitioned into two tiers according to their predictive power of their private

dataset; in the first tier, all types are sold a partially informative experiment Ê, where the θ2
dimension are sold a null while the θ1 dimension is sold a partially informative experiment, and

charged a relatively low price; in the second tier, all types are sold a fully informative experiment

E and charged a relatively high price. The threshold of the two tiers is determined similar to the

monopolist pricing17.

4.1 Discussion of Theorem 2

An intuitive (and ideal) revenue-maximization selling policy is that imπ2 ⊆ {0, 1} and π1 = 0,

where the designer implements no-haggling in the dimension with random predictive power and

extracts all the efficient valuation in another dimension by selling π1 = 0 (i.e. sells fully informative

prediction to this dimension).

Unfortunately, it can not be implemented because the two dimensions are interconnected

and it is not equal to simple aggregation even when the prediction power in one dimension is

fixed, due to the existence of pooling prediction. As figure 4 shows, when discussing the value

of experiment to some other type (e.g. Eθ to θ), the pooling prediction (a1, a2) may implement

different recommendations when combining the prediction of the private dataset, such as (a1, a1)

or (a2, a2), for other types. When the prediction of (a1, a2) is not credible at all (i.e. π1 = 0), even

the buyer with the weakest prediction power in that dimension, will confound the prediction when

combining the prediction of her private dataset. The consequence is that the valuation of the data

is now completely dependent on π1, i.e. the statistical error under the prediction (a1, a1) (as in the

left table in the second line). The no-haggling policy of the designer does not work anymore and

eventually the ideal policy can not implemented.

As the figure 4 shows, the statistical error caused by the data in the optimal menu, is from the

false prediction in state ωi, i.e. π−i. If the predictive power of the private dataset is too weak to

confound the prediction with other predictions, it will induce statistical error only dependent on one

parameter πi. Conditional on fixing one dimension, the designer always wants to extract the efficient

value of that dimension, thus reducing the false prediction parameter of that dimension low enough

to not induce any confounding prediction (a2, a2). Given this, the confounding prediction can only

be (a1, a1), of which statistical error is type-dependent for the one with weak enough predictive

power in the varying dimension. In this sense, data is equivalent to the goods with utility in

monetary units, which is irrelevant to the prediction of the private dataset. And purchasing training

data is equivalent to paying monetary transfer. The mutual incentive compatibility requires the

designer to equalize the monetary transfer of the data, which pins down the allocation of π1 and

separates the design of π1 and π2.

Another natural problem is the optimality of the two-tiered pricing. And we discuss it from

the perspective of economics and mathematics.

17The coefficient of the F (θ) is dependent on the prior. The whole conclusion can be naturally extended to the
prior (µ, 1− µ) with a little tedious algebra.
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Figure 4: Responsive Form of Eθ

Economically, a two-tier pricing mechanism is attractive because it not only allows the

designer to utilize the multi-dimensions to differentiate the buyers in a flexible way, thus extracting

the information rent, but also guarantees the extraction of the efficient valuation of the low type

(i.e. whose dataset has more accurate predictions). The designer can also reduce the information

rent of the buyers with high valuation by differentiating the fixed dimension, which reduces the

extraction of the efficient valuation in that dimension. The cardinality of the optimal tiers reflects

the trade-off between the extraction of the efficient valuation of the low type and the information

rent of the high type.

Mathematically, with the trade-off between the responsiveness and incentive compatibility,

we can derive the structure of the optimal menu. It turns out that the either the responsiveness in

the structure of the constraints is not binding, or the responsive one is sold the fully informative

experiment in the optimal menu. Meanwhile, the linearity of the problem implies that either the

responsiveness is binding, or the incentive compatibility is binding.

With the structure of the binding constraints, we can successfully separate the interaction

between dimensions and between IC and responsiveness, and apply the approaches in the standard

one-dimensional screening problem. The responsiveness shapes the allocation in the fixed dimension

while the monotonicity shapes the allocation in varying dimension. The cardinality of the options

in the menu is determined by the Carathéodory’s theorem. The allocation of π2(θ) is an extreme

point of the set of non-increasing function from Θ to [0, 1]. And the allocation of π1(θ) is pinned

down by the envelope theorem and responsiveness.
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The last problem is the determination of the threshold θ∗. The no-haggling gives birth to the

form similar the monopolist pricing. And the differentiation in the fixed dimension gives birth to the

coefficient of the distribution in the formula, which is decided by the common prior in our setting

and makes it different from the standard threshold in no-haggling. Compared to one-dimensional

screening, the designer adjusts the threshold to trade-off the extraction in two dimensions.

To summarize, the multi-dimensions broadens the scope of differentiation and the designer

can sell informative data to the relatively high dimension of the low type to extract both the

information rent of the high type and the valuation of the low type. The designer trade-offs the

extraction of the information rent of the high type and the efficient value of the low type. Also

note that theorem 2 pins down the structure of the optimal menu without imposing any regularity

assumptions on the distribution.

In the remainder of this section, we sketch the proof of Theorem 2. The proof overview casts

some light on how the interaction between responsiveness and incentive compatibility complicates

the data selling problem, and how to utilize the different responsive form when combining predic-

tions to differentiate the buyers. It also helps justify the setup in the general case by showing how

the structure of the constraints are pinned down by the primitives of the model.

4.2 Proof of Theorem 2

We proceed by first analyzing the trade-off between IC and Responsiveness constraints, then char-

acterizing the structure of the optimal menu, and finally transform the designer‘s problem with an

explicit and approachable functional optimization problem and uses an infinite-dimensional exten-

sion of Carathéodory’s theorem to solve it.

Step 1: Analyzing the Trade-off between IC and Responsiveness

In the general case, the responsiveness condition for θ is:

θ
θ
⩽ π1(θ)

π2(θ)
⩽

1
2
−θ

1
2
−θ

(Responsiveness)

We call [ θ
θ
,

1
2
−θ

1
2
−θ

] as the responsive zone. It is immediate to derive that the responsive condition

becomes strictly more stringent if θ increases. A direct corollary is that if one experiment is

responsive for some type θ, then it is responsive for all θ′ < θ.

First the responsiveness can be further reduced to π1(θ)
π2(θ)

∈ [ θ
θ
, 1] for all θ with structural

adjustment, as in figure 5. Conditional on θ1 = Constant, the preference for the information of

state ω1 is constant among all types. Therefore, the value of π1 is either type-independent and

can be regarded as the same monetary transfer for those or zero. If π1(θ) > π2(θ), the disutility

of statistical error for buyer is either the same or zero because they never choose (a1, a1) when

combining the prediction of their private dataset. Thus the designer can always charge a strictly

higher fee without violating any constraints by decreasing π1.
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Figure 5: Responsive Zone

Figure 6: Trade-off between IC and Responsiveness

Define the function λ (θ) : Θ → Θ as below: (i) λ (θ) = θ π1(θ)
π2(θ)

if π2(θ) ̸= 0 (ii) λ (θ) = θ

otherwise. λ (θ) ∈
[
θ, θ

]
. λ (θ) is to identify the threshold of the responsiveness of Eθ

18. The

experiment Eθ is responsive for θ′ ∈ [θ, λ (θ)], and pools the recommendation profile (a1, a2) with

(a1, a1) for θ
′ ∈

[
λ (θ) , θ

]
. Moreover, the responsiveness of θ is binding if and only if λ (θ) = θ.

We now analyze the trade-off between IC and responsiveness in the design problem. Denote

IC[θ → θ′] as the IC condition that type θ is unwilling to pretend as θ′.

Lemma 6. In the optimal mechanism, there always exists θ∗ ∈ Θ,

1. Eθ = E if and only if θ ≥ θ∗

2. for all θ < θ∗, θ < λ (θ) and there exists θ′ > λ (θ), IC[θ′ → θ] is binding

The first statement in lemma 6 implies that E is sold with a cut-off selling policy. It is

from the motonicity in the informativeness of the private prediction in the responsive data goods

for the informativeness of the prediction, and its equivalence constant monetary transfer when

non-responsive. The fully informative experiment both feature the two properties. Joint with the

mutual IC between two types with different levels of prediction power, we can derive this statement.

The second statement consists of two components. First, for all types under the threshold

for selling data with fully informative predictions, their responsiveness are never binding. Second,

18Here we assume the responsiveness is not binding for any θ ̸= θ allocated with E.
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Figure 7: Properties of λ (θ) and γ (θ)

there always exists some type non-responsive for the predictions in their data, the type is indifferent

between her menu and the one‘s.

The second statement is from interaction between the tightness of responsiveness and incentive

compatibility in the optimal menu. With the structural adjustment, at least one of them should

be satisfied in the optimal menu. And if the responsiveness is not binding, we can always find a

non-responsive one indifferent between her menu and the non-binding one‘s.

Step 2: Characterizing the Structure of the Optimal Mechanism

The standard analysis of mutual IC in data selling problem is choked due to the ”endogenous”

value of data. With lemma 6, we can further explore the structure of binding constraints in the

optimal selling mechanism. It can also help us tackle the tedious mutual incentive compatibility

problem.

Define the single-valued correspondence γ (θ) : Θ → Θ as below: (i) γ (θ) = θ if θ = λ (θ).

(ii) γ (θ) ∈ {a′ | IC [θ′ → θ] is binding} if θ < λ (θ). By lemma 6, {θ′ | IC[θ′ → θ] is binding} is a

non-empty subset of [λ (θ) , θ] if a < λ (θ). And if λ (θ) = θ, γ (θ) = θ.

We now explore the properties of λ (θ) and γ (θ).

Lemma 7 (Properties of λ (θ) and γ (θ)). In the optimal menu,

1. λ (θ) ≤ λ(θ̂) ≤ γ (θ) for θ̂ ∈ [θ, λ (θ)]

2. π2(θ) : Θ → [0, 1] is non-increasing

3. λ (θ) : Θ → Θ is non-decreasing

A direct corollary from λ(θ̂) ≤ γ (θ) in statement 1 of lemma 7 is that Eθ̂ is not responsive for

γ (θ). The three statement may seem standard in conventional mechanism design, however, with

responsive IC, the analysis is highly complicated compared to the standard analysis.

With lemma 7, we now can characterize the mutual IC between θ and θ′ given the order

between θ′ and λ(θ′). Further, we can characterize derive a sharper prediction about the structure

of the optimal mechanism.

24



Figure 8: Tiered Pricing Mechanism

A mechanism is called tiered pricing mechanism if it implements the policy where the type

space K is partitioned into intervals or singleton {Iα}α∈A, and in every partition set, the all types

share the same menu, i.e. (Eθ, tθ) = (Eα, tα) for all θ ∈ Iα.

Lemma 8 (Structure of the Optimal Mechanism). The optimal mechanism is a tiered pricing mech-

anism whose partition A corresponds to the index set in the decomposition of λ (θ) =
∑

α∈A cθαIθ≥θα

Step 3: Solving the Designer‘s Problem

With the structure of the optimal mechanism, we can now transform the constraints into some

tractable forms for solving the designer‘s problem.

Denote V (θ) = V (Eθ, θ)− tθ as the net value of type θ.

Lemma 9 (Equivalent Transformation of Constraints). In the optimal mechanism, the IC,IR and

Responsiveness conditions are equivalent to

1. 1
2π1(θ) + tθ = t∗ for all θ ∈ Θ, t∗ is the associated tariff for all θ ∈ [θ∗, θ]

2. V (θ) =
∫ θ
0 (1− π2(t))dt+ V (θ)

3. IR[θ] holds

4. π2(θ) : Θ → [0, 1] is non-increasing

A consequence of lemma 9 is that the designer‘s problem can be rewritten as a tractable form.

Also notice that lemma 9 successfully separates the dimensions for design. And in the dimension

of π2, the optimization takes a similar form to standard one-dimensional screening.
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Lemma 10 (Designer‘s Problem). The designer‘s problem of choosing the optimal π2 is equivalent

to solving the problem

maxπ2(θ)

∫ θ
θ Φ(θ)dπ2(θ) s.t. π2(θ) : Θ → [0, 1] is non-increasing

where Φ(θ) : Θ → R defined as Φ(θ) = 1
2θ

[∫ θ
θ (1− F (t)− tf(t))dt

]
−m(θ − θ).

Now the designer‘s problem consists of maximizing a linear functional subject to the constraint

of its monotonicity. By the infinite-dimensional extension of Carathéodory’s theorem 19, it follows

that the optimal π2 is an extreme point of the set of non-increasing allocation rules. By the

characterization of the extreme points of the set of non-increasing allocation rules20, we know that

π2 is a step function with imπ2 ⊆ {0, 1}.

With the form of π2 and the tiered-pricing structure, we can further deduce that the cardinality

of tiers in the optimal mechanism. And then, we can transform the designer‘s problem as the choice

of the optimal threshold θ∗. With following Lemma, we complete the proof of theorem 2.

Lemma 11 (Optimal Threshold). θ∗ ∈ argmaxθ θ
(
θ − 1

2F (θ)
)
is the optimal threshold of the tiers.

5 Future Work

We have solved the general case when the predictive power in one dimension is fixed, i.e. the design

of multi-dimensional allocation and information under one-dimensional preference. The simplicity

of the optimal menu relies on our simplifying assumption that the agent shares the same predictive

power in some dimension. And the extension is extremely difficult. With one-dimensional preference

(as in our case now), the varieties in the form of payoff function can be ranked in a monotone way

and thus be pinned down finally. While in the multi-dimensional preference, the varieties may be

messy, making it difficult to analyze the mutual IC.

Surprisingly, the structure of the optimal menu coincides with our work in the binary situation.

Joint with the explorations of the structure of the constraints in the optimal menu, this result

motivates us to try to tackle the design under multi-dimensional preference in our future work.

19See details in C.1.2
20See details in C.1.1
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A Appendix: Proof of Lemma in Setup and Binary Case

A.1 Proof of Lemma 1

Consider any type n and experiment E = (S, π). Without loss of generality, let every posterior of

the type choose a single action after each signal. Let Sa denote the set of signals in experiment

E that induces type n to choose action profile a ∈ AK for every posterior. Thus, ∪a∈AKSa = S.

Construct experiment E′ = (S′, π′) as a recommendation for type n based on experiment E, with

signal space S′ = AK and π′(a|ω) =
∫
Sa π(s|ω), for all ω ∈ Ω and a ∈ AK .

By construction, E′ and E induce the same outcome distribution for type n; hence, V (E′, n) =

V (E,n). Moreover, E′ is a garbling of E. By Blackwell’s theorem, we have V (E′, n′) = V (E,n′)

for all n′. Therefore, for any incentive-compatible and individually rational direct mechanism

E(n), t(n), we can construct another direct mechanism E′(n), t(n) whose experiments lead type

n to take action a after observing recommendation profile s that is also incentive compatible and

individually rational, thus yielding weakly larger profits.

A.2 Proof of Lemma 2

Suppose that there exists a responsive experiment for some type n implementing signal a, which

recommends arj = a1 and ari = a2 for some pair (i, j) where i > j in a responsive experiment for

some type n, which requires that

µnj2

µnj1
≤ π1k

π2k
≤ µni2

µni1

Notice that the order the index of posteriors implies the order of likelihood-ratio between the

two state, therefore i > j implies

µni2

µni1
≤ µnj2

µnj1

And the equality can not hold simultaneously, so we can derive the implementable set of

recommendation profiles in lemma 2.

A.3 Proof of Lemma 3

If the fully informative experiment E does not lie in the optimal menu, then choose the one charged

the highest fee and replace the experiment with E, the revenue gets a weakly better improvement.

A.4 Proof of Lemma 4

Statement 1 is obvious because the two adjustments respectively recommend the same subset of

posteriors of the type n to choose converse actions with the same probability in the same state,

which induces the converse welfare changes.

27



The first outcome of statement 2 is to ”restore” the valuation with fully informative experi-

ment/without information.

Take the first adjustment as example, and the second adjustment is similar.

∆(aK+1 1→ a1 | E,n) ≜ V (E(aK+1 i→a1),n)−V (E,n)
δ =

(
∑K

k=1 µnk1 Pr(µnk)−0)δ
δ =

∑K
k=1 µnk1 Pr(µnk) = µ1

The last equality comes from the splitting lemma.

We now prove the second outcome of statement 2

For all n, there exists k∗ such that

µn11

µn12
≥ µn21

µn22
≥ ... ≥ µnk∗1

µnk∗2
≥ 1 ≥ µnk∗+11

µnk∗+12
≥ µnK1

µnK2

Therefore

∆(aK+1 1→ ak
∗+1 | E,n) + ∆(a1

2→ ak
∗ | E,n)

=
V (E(aK+1 1→ ak

∗+1), n)− V (E,n) + V (E(a1
2→ ak

∗
), n)− V (E,n)

δ

=

k∗∑
k=1

µnk1 Pr(µnk) +

K∑
k=k∗+1

µnk2 Pr(µnk)

=un

So we prove the second outcome.

A.5 Proof of Lemma 5

Proof of Statement (i) If there exists an experiment E for some type n in the optimal menu

which is not non-dispersed, i.e. π1K+1 ̸= 0 or π21 ̸= 0. Suppose π1K+1 ̸= 0 w.l.o.g.

Now consider the adjustment ∆(aK+1 1→ a1 | E,n) in this experiment. By lemma 4 it brings

the net incremental value µ1 to the type n while for other types, the net incremental value is weakly

less than µ1. Meanwhile, the obedience is also more relaxing.

Precisely speaking,

π11+π1K+1

π21
≥ π11

π21
≥ µnK2

µnK1

0
π2K+1

≤ π1K+1

π2K+1
≤ µn12

µn11

Therefore this adjustment allows the seller charge µ1 more to the type n without violating IC,

IR and Obedience constraints.

Proof of Statement (ii)
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In the binary situation, the designer sells the fully informative experiment to one type (type

I), and designs an experiment to another type (type II). By lemma 1, the experiment designed is

responsive for type II.

Suppose it is not responsive for type I. There must exist some recommendation profile where

the type I chooses another action profile after Bayesian updating when receiving them. By lemma

6, this experiment is non-dispersed. Therefore the signal (a1, a1) and (a2, a2) are responsive for

type I. So the signal (a1, a2) is not responsive for type I.

Suppose (a1, a2) in fact recommends type I to choose (a1, a1) (the case (a1, a1) is similar to

this one). Then considering the equivalent responsive form of this experiment and adjust π22 to

π23 until the signal (a1, a2) is responsive. And the designer can charge a strictly higher fee to type

II without violating other constraints, which contracts the optimality of the menu.

A.6 Proof of Theorem 1

Now the designer‘s problem is:

max
E,T

T

s.t.

T ⩽ θ′1 (1− π1) + θ′2 (1− π2) (IR-H)

T ⩽ (2θ′1 − θ1) (1− π1) + (2θ′2 − θ2) (1− π2) (IC-H)

max
{

θ2
1
2
−θ1

θ′2
1
2
−θ′1

}
= k1 ⩽

π1
π2

⩽ k2 = min
{ 1

2
−θ2
θ1

,
1
2
−θ′2
θ′1

}
(Responsiveness)

And

∆ = RHS(IR-H)− RHS(IC-H) = (θ1 − θ′1)(1− π1) + (θ2 − θ′2)(1− π2)

A.6.1 θ′1 ≤ θ1 and θ′2 ≤ θ2

In this case, ∆ ≥ 0. So in the optimal menu, (IC −H) is always binding. The designer‘s problem

is now

max (2θ′1 − θ1) (1− π1) + (2θ′2 − θ2) (1− π2)

s.t.

max
{

θ2
1
2
−θ1

θ′2
1
2
−θ′1

}
⩽ π1

π2
⩽ min

{ 1
2
−θ2
θ1

,
1
2
−θ′2
θ′1

}
(Ob)
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Case 1: 2θ′1 ≥ θ1 and 2θ′2 ≥ θ2

Then all coefficients of π1 and π2 in the objective function is non-negative. So the optimal

policy is (π∗
1, π

∗
2) = (1, 1)

Case 2: 2θ′1 ≤ θ1 and 2θ′2 ≤ θ2

Then all coefficients of π1 and π2 in the objective function is non-positive. So the optimal

policy is (π∗
1, π

∗
2) = (0, 0)

Case 3: 2θ′1 ≥ θ1 and 2θ′2 ≤ θ2

Then the coefficient of π1 is always non-positive. So in the optimal policy is π1
π2

= max
{

θ2
1
2
−θ1

θ′2
1
2
−θ′1

}
Notice that 1

2 − θ′1 ≥ 1
2 − θ1 ≥ (12 − θ1)

θ′2
θ2

implies θ2
1
2
−θ1

≥ θ′2
1
2
−θ′1

Therefore π1 = k1π2 =
θ2

1
2
−θ1

π2 in the optimal menu

Now discuss the choice of optimal π2

max[−k1 (2θ
′
1 − θ1)− (2θ′2 − θ2)]π2 = (2θ′1 − θ1) [

2θ′2−θ2
θ1−2θ′1

− k1]π2 ≡ (2θ′1 − θ1) (k
∗ − k1)π2

s.t.

0 ≤ π2 ≤ 1

Denote F (θ′1, θ
′
2) = θ2(2θ

′
1 − θ1)− (θ2 − 2θ′2)(

1
2 − θ1)

Notice that F ( θ12 ,
θ2
2 ) = 0, F ( θ12 , 0) = −θ2(

1
2 −θ1) < 0 and F (θ1,

θ2
2 ) = θ1θ2 > 0 and F (θ1, 0) =

2θ2(θ2 − 1
4)

So in this zone, the (θ′1, θ
′
2) is sold (π∗

1, π
∗
2) = (0, 0) when F (θ′1, θ

′
2) > 0 while sold (π∗

1, π
∗
2) =

(k1, 1) when F (θ′1, θ
′
2) ≤ 0, and both situations always exist.

Case 4: 2θ′1 ≤ θ1 and 2θ′2 ≥ θ2

This case is similar to case 1.3 and in this zone, the (θ′1, θ
′
2) is sold either (π∗

1, π
∗
2) = (0, 0) or

(π∗
1, π

∗
2) = (1, 1

k2
), and both situations always exist.

Notice that θ1 + θ2 ≤ 1
2 so at least one of (θ1, 0) and (0, θ2) is sold a partially informative

experiment ((π∗
1, π

∗
2) = (k1, 1) or (π

∗
1, π

∗
2) = (1, 1

k2
) )

A.6.2 θ1 ≤ θ′1 and θ2 ≥ θ′2

Similar to the discussions in case 1.3, in the optimal policy, π1
π2

= k1, i.e. π1 = k2π2 =
θ2

1
2
−θ1

π2

maxT

s.t.
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T ⩽ (θ′1 + θ′2)− (k1θ
′
1 + θ′2)π2 (IR−H)

T ⩽ (2θ′1 + 2θ′2 − θ1 − θ2) + [(2θ′2 − θ2)− k1 (2θ
′
1 − θ1)]π2 (IC −H)

Recall that F (θ′1, θ
′
2) = θ2(2θ

′
1 − θ1) − (θ2 − 2θ′2)(

1
2 − θ1). So in this zone, the (θ′1, θ

′
2) is sold

(π∗
1, π

∗
2) = (0, 0) when F (θ′1, θ

′
2) > 0

When F (θ′1, θ
′
2) ≤ 0, notice that ∆ = (IR−H)− (IC −H) = (θ′1− θ1)π1+(θ′2− θ2)π2+(θ1+

θ2− θ′1− θ′2) = [(θ′2− θ2)+k1(θ
′
1− θ1)]π2+(θ1+ θ2− θ′1− θ′2) is positive when π2 = 0 while negative

when π2 = 1, by the continuity and linearity, the optimal π∗
2 is the interior point in [0, 1], i.e.

[(θ′2 − θ2) + k1(θ
′
1 − θ1)]π2 + (θ1 + θ2 − θ′1 − θ′2) = 0

⇒ π∗
2 =

θ1−θ′1+θ2−θ′2
θ2−θ′2+k1(θ1−θ′1)

and π∗
1 = k1π

∗
2

So the optimal policy is (π∗
1, π

∗
2) = (k1

θ1−θ′1+θ2−θ′2
θ2−θ′2+k1(θ1−θ′1)

,
θ1−θ′1+θ2−θ′2

θ2−θ′2+k1(θ1−θ′1)
) when F (θ′1, θ

′
2) ≤ 0,

and (π∗
1, π

∗
2) = (0, 0) otherwise.

A.6.3 θ1 ≥ θ′1 and θ2 ≤ θ′2

Case 3 is similar to case 2 and we omit here.

B Appendix: Proof of Lemma in the General Case

B.1 Proof of the Optimal Responsiveness Zone

If π1(θ)
π2(θ)

> 1 for some θ, then for other θ′ Eθ either recommends the same action profile with the

same probability

Eθ for θ′ (a1, a1) (a1, a2) (a2, a2)

ω1 1− π2 π2 0

ω2 0 π1 1− π1

or pools the recommendation (a1, a2) with (a2, a2)

Eθ for θ′ (a1, a1) (a2, a2)

ω1 1− π2 π2
ω2 0 1

In the first case, the payoff for θ′ is V (Eθ, θ
′) = θ′ +m−mπ1 − θ′π2. In the second case, the

payoff is V (Eθ, θ
′) = θ′ +m− 1

2π2. Notice that adjust π1 to 1− π1 will increase the fees charging

to a without violating the IC conditions. We can adjust in this way until all θ
1
2
−m

≤ π1(θ)
π2(θ)

≤ 1.
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B.2 Proof of Lemma 6

Proof of Statement 1

We first prove that if Eθ∗ = E for some θ∗ ∈ Θ, then for all θ > θ∗, Eθ = E.

Suppose there exists θ > θ∗, Eθ ̸= E.

Then considering the IC[θ → θ∗] and IC[θ∗ → θ]

IC[θ → θ∗]

θ +m−mπ1(θ)− θπ2(θ)− tθ ≥ θ +m− tθ∗

−mπ1(θ)− θπ2(θ) ≥ tθ − tθ∗

IC[θ∗ → θ]

θ∗ +m− tθ∗ ≥ θ∗ +m−mπ1(θ)− θ∗π2(θ)− tθ

tθ − tθ∗ ≥ −mπ1(θ)− θ∗π2(θ)

Combining the two equations and we get −θπ2(θ) ≥ −θ∗π2(θ), which implies that π2(θ) = 0

since θ > θ∗. Thus, Eθ = E, a contradiction.

By the existence of the fully informative experiment, the set IE defined as {θ|Eθ = E} is

non-empty. Define θ∗ = inf IE . We can derive the closeness of IE , , which means θ∗ = min IE , by

verifying the optimality of the menu and we complete the proof of closeness after proving statement

2.

Proof of Statement 2

We first prove that θ < λ(θ) for all θ < θ∗.

Suppose there exist θ < θ∗ whose responsiveness constraints are binding, i.e θ = λ(θ) = θ π1(θ)
π2(θ)

.

Therefore, V (Eθ, θ) = θ+m−θπ2(θ)−mπ1(θ) = θ+m− 1
2π1(θ) and V (Eθ′ , θ

′) = θ′+m− 1
2π1(θ

′)

for any θ′ ∈ (θ, θ∗).

V (Eθ, θ)− tθ
≥ V (Eθ′ , θ)− tθ′ (IC[θ → θ′])

= u(Eθ′ , θ)− U(θ)− tθ′

≥ u(Eθ′ , θ
′)− U(θ′)− tθ′ + U(θ′)− U(θ) (monotonicity in θ of u(E, θ))

= V (Eθ′ , θ
′)− tθ′ + U(θ′)− U(θ)

≥ V (Eθ, θ
′)− tθ + U(θ′)− U(θ) (IC[θ′ → θ])

= V (Eθ, θ)− tθ (binding responsiveness)

The first inequality is from IC[θ → θ′]. The second inequality is from the (negative) single-

crossing property between π2 and θ of u(E, θ) = 1− θπ2−mπ1. And the equality is attained if and
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only if π2 = 0. The third inequality is from IC[θ′ → θ]. And the last equality is from the binding

responsiveness of Eθ for θ. We conclude that all equality conditions above should be satisfied.

Therefore, π2(θ
′) = 0 and by the monotonicity of u(E, θ). So Eθ′ = E, which contradicts that

θ′ < θ∗.

Now we prove the existence of binding (non-responsive) IC.

Motivated by the proof of θ
1
2
−m

≤ π1(θ)
π2(θ)

≤ 1, we can keep adjusting π1 to 1 − π1. By θ
1
2
−m

≤
π1(θ)
π2(θ)

≤ 1 for all θ. Therefore for other θ′, Eθ either recommends the same action profile with the

same probability

Eθ for θ′ (a1, a1) (a1, a2) (a2, a2)

ω1 1− π2 π2 0

ω2 0 π1 1− π1

or pools the recommendation (a1, a2) with (a1, a1)

Eθ for θ′ (a1, a1) (a2, a2)

ω1 1 0

ω2 π1 1− π1

In the first case, the payoff for θ′ is V (Eθ, θ
′) = θ′ +m−mπ1 − θ′π2. In the second case, the

payoff is V (Eθ, θ
′) = θ′ +m − 1

2π1. Notice that adjustment from π1 to 1 − π1 is profitable to the

designer without violating other conditions until either the responsiveness is binding, or for some

θ′ who is recommended a pooling recommendation profile by Eθ, the IC [θ′ → θ] is binding. By

the proof above, the responsiveness is never binding for the θ < θ∗. Therefore, we can derive the

statement 2.

With statement 2, we can further complete the proof of closeness in statement 1, which means

θ∗ = min IE . If λ(θ∗) > θ∗, i.e. the responsiveness of θ∗ is not binding, then there exist θ′ > θ∗,

IC [θ′ → θ] is binding, which means that tθ∗ + 1
2π1(θ

∗) = t∗, where t∗ is the associated tariff of

those sold the fully informative one. For some θ∗ < θ̂ < λ(θ∗), IC[θ̂ → θ∗] implies that −t∗ ≥
−θ̂π2(θ

∗)−mπ1(θ
∗)− tθ∗ , i.e. tθ∗ +

1
2π1(θ

∗) ≤ θ̂π2(θ
∗) +mπ1(θ

∗) + tθ∗ . Then we have λ(θ∗) ≤ θ̂,

which is contradictory.

If λ(θ∗) = θ∗, for θ′ > θ∗, IC [θ′ → θ∗] implies that −t∗ ≥ −1
2π1(θ

∗) − tθ∗ , while IC [θ∗ → θ′]

implies that −1
2π1(θ

∗)− tθ∗ ≥ −t∗, which means that tθ∗ +
1
2π1(θ

∗) = t∗. Therefore θ∗ is indifferent

between the menu of her own and those of θ where θ > θ∗. The designer can strictly increase

her revenue by replacing the menu of θ∗ to the fully informative one, because tθ∗ < t∗, without

violating other conditions.

B.3 Proof of Lemma 7

If θ ∈
[
θ∗, θ

]
, the conclusion trivially holds.
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Now we discuss that θ ∈ [θ, θ∗) where responsiveness is not binding a.e, i.e. λ(θ) > θ.

In the optimal menu, for θ̂ ∈ [θ, λ (θ)]. Eθ is responsive for θ̂. Since θ̂ > θ, Eθ̂ is also responsive

for θ.

We first prove that π2(θ) ≥ π2(θ̂)

IC[θ → θ̂]

V (Eθ, θ)− tθ ≥ V (Eθ̂, θ)− tθ̂

θ +m− aπ2(θ)−mπ1(θ)− tθ ≥ θ +m− θπ2(θ̂)−mπ1(θ̂)− tθ̂

tθ̂ − tθ ≥ θ[π2(θ)− π2(θ̂)] +m[π1(θ)− π1(θ̂)]

IC[θ̂ → θ]

V (Eθ̂, θ̂)− tθ̂ ≥ V (Eθ, θ̂)− tθ

θ̂ +m− θ̂π2(θ̂)−mπ1(θ̂)− tθ̂ ≥ θ̂ +m− θ̂π2(θ)−mπ1(θ)− tθ

θ̂[π2(θ)− π2(θ̂)] +m[π1(θ)− π1(θ̂)] ≥ tθ̂ − tθ

By IC[θ̂ → θ] and IC[θ̂ → θ̂], we derive that

(θ̂ − θ)[π2(θ)− π2(θ̂)] ≥ 0

Therefore π2(θ) ≥ π2(θ̂)

B.3.1 Proof of Statement 1

We now prove the statement when π2(θ) ≥ π2(θ̂) > 0.

Part 1 λ(θ̂) ≤ γ (θ)

If λ(θ̂) > γ (θ) > θ̂, then Eθ̂ is responsive for γ (θ), we have

γ(θ̂) > λ(θ̂) > γ(θ) ≥ λ(θ) ≥ θ̂ > θ

Therefore, both the responsiveness of θ and θ̂ are not binding while the IC[γ (θ) → θ] and

IC[γ(θ̂) → θ̂] are binding.

V (Eθ, γ (θ))− tθ ≥ V (Eθ̂, γ (θ))− tθ̂

γ (θ) +m− 1
2π1(θ)− tθ ≥ γ (θ) +m− γ (θ)π2(θ̂)−mπ1(θ̂)− tθ̂

tθ̂ − tθ ≥ 1
2π1(θ)− γ (θ)π2(θ̂)−mπ1(θ̂)
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IC[γ(θ̂) → θ̂] is binding, while IC[γ(θ̂) → θ] may not be binding. (Moreover, Eθ is also not

responsive for γ(θ̂).)

V (Eθ̂, γ(θ̂))− tθ̂ ≥ V (Eθ, γ(θ̂))− tθ

γ(θ̂) +m− 1
2π1(θ̂)− tθ̂ ≥ γ(θ̂) +m− 1

2π1(θ)− tθ

1
2π1(θ)−

1
2π1(θ̂) ≥ tθ̂ − tθ

Combining the two equations above, we have

1
2π1(θ)−

1
2π1(θ̂) ≥

1
2π1(θ)− γ (θ)π2(θ̂)−mπ1(θ̂)

γ (θ)π2(θ̂)− θπ1(θ̂) ≥ 0

γ (θ) ≥ γ(θ̂)

which contradicts that γ (θ) < γ(θ̂).

Therefore λ(θ̂) ∈ [θ̂, γ (θ)] , or Eθ̂ is not responsive for λ (θ)

Part 2 λ(θ̂) ≥ λ (θ)

If there exists θ < θ̂ ≤ λ (θ), λ(θ̂) < λ (θ).

IC[γ (θ) → θ] is binding while IC[γ (θ) → θ̂] may not be binding. Moreover, Eθ̂ is not responsive

for γ (θ) because λ(θ̂) < γ (θ)

V (Eθ, γ (θ))− tθ ≥ V (Eθ̂, γ (θ))− tθ̂

γ (θ) +m− 1
2π1(θ)− tθ ≥ γ (θ) +m− 1

2π1(θ̂)− tθ̂

tθ̂ − tθ ≥ 1
2π1(θ)−

1
2π1(θ̂)

IC[θ̂ → θ]

θ̂[π2(θ)− π2(θ̂)] +m[π1(θ)− π1(θ̂)] ≥ tθ̂ − tθ

Combining the two inequalities, we have

θ̂[π2(θ)− π2(θ̂)] +m[π1(θ)− π1(θ̂)] ≥ 1
2π1(θ)−

1
2π1(θ̂)

θ̂
[
π2(θ)− π2(θ̂)

]
≥ θ

[
π1(θ)− π1(θ̂)

]
θ̂[π2(θ)− π2(θ̂)] ≥ λ (θ)π2(θ)− λ(θ̂)π2(θ̂)

[θ̂ − λ(θ̂)][π2(θ)− π2(θ̂)] + [λ(θ̂)− λ (θ)]π2(θ) ≥ 0

By θ̂ < λ(θ̂) and λ(θ̂) < λ(θ), we have
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0 > [θ̂ − λ(θ̂)][π2(θ)− π2(θ̂)] + [λ(θ̂)− λ (θ)]π2(θ) ≥ 0

which is impossible.

Therefore, λ(θ̂) ≥ λ (θ) for θ̂ ∈ [θ, λ (θ)]

This completes the proof of statement 1.

B.3.2 Proof of Statement 2: Monotonicity on [θ, λ(θ̂)]

Now we first prove the π2(θ̂) is non-increasing on θ̂ ∈ [θ, λ (θ)]

Considering θ̂′ > θ̂. By λ (θ) ≤ min{λ(θ̂′), λ(θ̂)}, Eθ̂′ and Eθ̂ are both responsive for θ̂′ and θ̂.

IC[θ̂′ → θ̂]

V (Eθ̂′ , θ̂
′)− tθ̂′ ≥ V (Eθ̂, θ̂)− tθ̂

θ̂′ +m− θ̂′π2(θ̂
′)−mπ1(â

′)− tθ̂′ ≥ θ̂′ +m− θ̂′π2(θ̂)−mπ1(θ̂)− tθ̂

tθ̂ − tθ̂′ ≥ θ̂′[π2(θ̂
′)− π2(θ̂)] +m[π1(θ̂

′)− π1(θ̂)]

IC[θ̂ → θ̂′]

V (Eθ̂, θ̂)− tθ̂ ≥ V (Eθ̂′ , θ̂)− tθ̂′

θ̂ +m− θ̂π2(θ̂)−mπ1(θ̂)− tâ ≥ θ̂ +m− θ̂π2(θ̂
′)−mπ1(θ̂

′)− tθ̂′

θ̂[π2(θ̂
′)− π2(θ̂)] +m[π1(θ̂

′)− π1(θ̂)] ≥ tθ̂ − tθ̂′

By IC[θ̂ → θ̂′] and IC[θ̂′ → θ̂], we derive that

(θ̂ − θ̂′)[π2(θ̂
′)− π2(θ̂)] ≥ 0

Therefore π2(θ̂) ≥ π2(θ̂
′).

B.3.3 Proof of Statement 3: Monotonicity on [θ, λ(θ̂)]

Considering θ < θ̂ < θ̂′ < λ(θ), by the result of Part 2 in the Proof of Statement 1, we learn

that θ̂ < θ̂′ < λ(θ̂). Reuse that result on θ̂ to get λ(θ̂) < λ(θ̂′).

B.3.4 Proof of Statement 2 and 3: Global Monotonicity

If there exists θ ̸= θ∗, λ(λ(θ)) = λ(θ)

By the monotonicity of λ(θ̂), λ(θ̂) = λ(θ) for all θ̂ ∈ [θ, λ(θ)]

We now prove that λ(θ) = θ∗
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If λ(θ) < θ∗, for any λ(θ) < θ′ < θ∗

IC[θ′ → λ(θ)]

θ′ +m− θ′π2(θ
′)−mπ1(θ

′)− tθ′ ≥ θ′ +m− 1
2π1 (λ(θ))− tλ(θ)

1
2π1 (λ(θ))− θ′π2(θ

′)−mπ1(θ
′) ≥ tθ′ − tλ(θ)

IC[λ(θ) → θ′]

λ(θ) +m− λ(θ)π2 (λ(θ))−mπ1 (λ(θ))− tλ(θ) ≥ λ(θ) +m− λ(θ)π2(θ
′)−mπ1(θ

′)− tθ′

tθ′ − tλ(θ) ≥ λ(θ)π2 (λ(θ)) +mπ1 (λ(θ))− λ(θ)π2(θ
′)−mπ1(θ

′)

Combining the two equations and we have

1
2π1 (λ(θ))− θ′π2(θ

′)−mπ1(θ
′) ≥ λ(θ)π2 (λ(θ)) +mπ1 (λ(θ))− λ(θ)π2(θ

′)−mπ1(θ
′)

(λ(θ)− θ′)π2(θ
′) ≥ 0

which is contradictory.

This implies that λ(θ) = λ(λ(θ)) can only occur when λ(θ) = θ∗. And in this case, the

λ(θ) = θ∗ < θ = λ(θ∗), and π2(θ) > 0 = π2(θ
∗).

For all θ where λ(θ) < λ(λ(θ)), there always exist θ̂ ∈ [θ, λ (θ)], λ(θ̂) > λ (θ), so the mono-

tonicity can be transitive across different [θ, λ (θ)]21.

Above all, the monotonicity of λ (θ) and π2(θ) can always be transitive across different [θ, λ (θ)],

thus proving the global monotonicity.

B.4 Proof of Lemma 8

It is equivalent to show that, if λ (θ) = λ(θ′) for some θ′ > θ, then for all θ̂ ∈ [θ, θ′], θ̂ share the

same menu with θ, i.e. (π1(θ̂), π2(θ̂), tθ̂) = (π1(θ), π2(θ), tθ).

By λ (θ) = λ (θ′) and λ(θ̂) is non-decreasing for θ̂ ∈ [θ, λ (θ)] by lemma 7, λ(θ̂) = λ (θ) =

λ (θ′) < γ(θ) for θ̂ ∈ [θ, θ′]. We know that both Eθ and Eθ̂ are responsive for both θ and θ̂, and

both not responsive for γ (θ).

IC[γ (θ) → θ] is binding while IC[γ (θ) → θ̂] may not be binding.

V (Eθ, γ (θ))− tθ ≥ V (Eθ̂, γ (θ))− tθ̂

tθ̂ − tθ ≥ 1
2π1(θ)−

1
2π1(θ̂)

21To guarantee the validity of the transitivity (of monotonicity) across different [θ, λ(θ)), it remains to exclude one
situation where for all θ̂ ∈ [θ, λ(θ)), λ(θ̂) = λ(θ) when λ(θ) ̸= λ(λ(θ)). See in C.2
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IC[θ̂ → θ]

V (Eθ̂, θ̂)− tθ̂ ≥ V (Eθ, θ̂)− tθ

θ̂[π2(θ)− π2(θ̂)] +m[π1(θ)− π1(θ̂)] ≥ tθ̂ − tθ

Combining the two inequalities, we have

[θ̂ − λ(θ̂)][π2(θ)− π2(θ̂)] + [λ(θ̂)− λ (θ)]π2(θ) ≥ 0

[θ̂ − λ(θ̂)][π2(θ)− π2(θ̂)] ≥ 0

So we have π2(θ̂) = π2(θ) for all θ̂. By λ(θ̂) = λ (θ), we have π1(θ̂) = π1(θ). Revisiting the IC

conditions between θ̂ and θ, we can further derive that tθ̂ = tθ.

B.5 Proof of Lemma 9

B.5.1 Necessity

With IC, IR and Responsiveness,

Statement 1: We first prove that for all θ̂ ∈ [θ, λ (θ)),

1
2π1(θ)−

1
2π1(θ̂) = tθ̂ − tθ

By γ(θ̂) ≥ λ(θ̂) > λ(θ) > θ̂, IC[γ(θ̂) → θ] is binding, while IC[γ(θ̂) → θ̂] may not be binding

V (Eθ̂, γ
(
θ̂
)
)− tθ̂ ≥ V (Eθ, γ

(
θ̂
)
)− tθ

γ
(
θ̂
)
+m− 1

2π1(θ̂)− tθ̂ ≥ γ
(
θ̂
)
+m− 1

2π1(θ)− tθ

1
2π1(θ)−

1
2π1(θ̂) ≥ tθ̂ − tθ

With IC[γ(θ) → θ] is binding, while IC[γ(θ) → θ̂] may not be binding, we have

1
2π1(θ)−

1
2π1(θ̂) ≤ tθ̂ − tθ

Therefore, for all θ̂ ∈ [θ, λ (θ)),

1
2π1(θ)−

1
2π1(θ̂) = tθ̂ − tθ

Now we prove that for all θ, θ̂ ∈ Θ, θ < θ̂.
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1
2π1(θ)−

1
2π1(θ̂) = tθ̂ − tθ

By the proof above, we can also get that for any θ ≤ θ̂′ < λ (θ),

1
2π1(θ)−

1
2π1(θ̂

′) = tθ̂′ − tθ

Therefore, for all θ ≤ θ̂ < θ̂′ < λ (θ),

1
2π1(θ̂

′)− 1
2π1(θ̂) = tθ̂ − tθ̂′

By that λ (θ) > θ a.e. in Θ, this relation can be transitive across different [θ, λ (θ)). Therefore,

for all θ ∈ Θ, 1
2π1(θ) + tθ = t∗.

Statement 2: With statement 1, we can reduce the net value function into one dimension.

V (θ) = θ +m− θπ2(θ)−mπ1(θ)− tθ

= θ +m− θπ2(θ)− 2m(t∗ − tθ)− tθ

= θ(1− π2(θ))− 2θtθ +m(1− 2t∗)

By the optimal structure of the menu, for any θ ∈ [θ, θ∗), there always exist ϵ, Eθ′ is always

responsive for θ, θ′ ∈ (θ − ϵ, θ + ϵ). V (π2, θ) is differentiable and absolutely continuous for on

θ ∈ [θ, θ∗)22. By the envelope theorem (Milgrom and Segal (2002), Sinander (2022)), for all such θ,

V (θ) = V (θ) +
∫ θ
θ Vt(π2, t)dt = V (θ) +

∫ θ
θ (1− π2(t))dt

Statement 3 and 4: Statement 3 trivialy holds when all IR conditions hold. Statement 4 is

from lemma 7.

B.5.2 Sufficiency

Incentive Compatibility

Construct tθ =
θ
2θ
(1− π2(θ)) + tθ −

∫ θ
θ (1−π2(t))dt

2θ
.

i.Responsive IC

IC[θ → θ′] where Eθ′ is responsive for θ

22Here only for θ∗, the differentiability of V (θ) may not hold when λ(θ) = θ∗ for θ ∈ (θ − ϵ, θ) for some ϵ. With
Therefore, we omit the tedious description of this situation which does not impair our conclusion.
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V (Eθ, θ)− tθ − V (Eθ′ , θ) + tθ′

=− θπ2(θ)− 2θ̄tθ + 2θ̄tθ′ + θπ2
(
θ′
)

= θ(π2
(
θ′
)
− π2 (θ)) + 2θ̄(

θ′

2θ

(
1− π2

(
θ′
))

− θ

2θ
(1− π2(θ)) +

∫ θ
θ′ (1− π2(t)) dt

2θ
)

=
(
θ′ − θ

) (
1− π2

(
θ′
))

+

∫ θ

θ′
(1− π2(t)) dt

=−
(
θ′ − θ

)
π2

(
θ′
)
+

∫ θ′

θ
π2(t)dt

⩾ 0

ii.Non-Responsive IC

IC[θ → θ′] where Eθ′ is not responsive for θ

V (Eθ, θ)− tθ − V (Eθ′ , θ) + tθ′ = −θπ2(θ)− 2θtθ − 2mt∗ +
1

2
π1

(
θ′
)
+ tθ′

= −θπ2(θ)− 2θ̄tθ + (1− 2m)t∗

= 2θ (t∗ − tθ)− θπ2(θ)

= θπ1(θ)− θπ2(θ)

⩾ 0.

Individual Rationality

For θ > λ(θ)

V (Eθ, θ)− tθ = θ +m−mπ1(θ)− θπ2(θ)− tθ ≥ V (Eθ, θ) = θ +m− 1
2π1(θ)− tθ ≥

θ +m−mπ1(θ)− tθ = V (Eθ, θ) ≥ 0

The first inequality is from the IC[θ → θ]. The second inequality is from θ > λ(θ), and the

last inequality is from IR[θ].

For θ ≤ λ(θ)

V (Eθ, θ)− tθ = θ +m−mπ1(θ)− θπ2(θ)− tθ ≥ V (Eθ, θ) = θ +m−mπ1(θ)− θπ2(θ)− tθ ≥
θ +m− θπ2(θ)−mπ1(θ)− tθ = V (Eθ, θ) ≥ 0

The first inequality is from the IC[θ → θ]. The second inequality is from the monotonicity,

and the last inequality is from IRθ.

So all IR[θ] can be reduced to IR[θ] and IC[θ → θ]

Responsiveness

For θ
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θ
π1(θ)

π2(θ)
= 2θ

t∗ − tθ
π2(θ)

= 2θ

θ−θ+θπ2(θ)

2θ
−

∫ θ
θ (1−π2(t))dt

2θ

π2(θ)
=

θπ2(θ) +
∫ θ
θ π2(t)dt

π2(θ)

⩾
θπ2(θ)

π2(θ)

= θ

So far we have proved the sufficiency.

B.6 Proof of Lemma 10 and 11

maxπ2(θ),π1(θ),tθ

∫ θ
θ tθdF (θ)

s.t.

π2(θ) : Θ → [0, 1] is non-increasing

tθ =
θ
2θ
(1− π2(θ)) + tθ −

∫ θ
θ (1−π2(t))dt

2θ

tθ +
1
2π1(θ) = t∗

m−mπ1(θ)− tθ ≥ 0

And 23

∫ θ

θ
tθdF (θ)

=

∫ θ

θ

tθ +
θ

2θ
(1− π2(θ))−

∫ θ
θ (1− π2(t)) dt

2θ

 dF (θ)

=
1

2θ

∫ θ

θ

(
1− F (θ)

f(θ)
− θ

)
π2(θ)dF (θ) + θtθ

=
1

2θ

∫ θ

θ

[∫ θ

θ
(1− F (t)− tf(t))dt

]
dπ2(θ) + θtθ

It is also easy to verify that m = mπ1(θ) + tθ. Therefore, given the existence of θ∗ and the

formulation tθ =
θ
2θ
(1− π2(θ)) + tθ −

∫ θ
θ (1−π2(t))dt

2θ
, we have

tθ =
1
2θ̄

(1− π2(θ)) + tθ −
∫ θ
θ (1−π2(t))dt

2θ̄

t∗ = 1
2θ̄

+ tθ −
∫ θ
θ (1−π2(θ))dt

2θ̄

π1(θ) =
1
θ̄
−

∫ θ
θ (1−π2(θ))dt

θ̄

tθ = m− m
θ̄
+

m
∫ θ
θ (1−π2(θ))dt

θ̄
23Here we use the fact that

∫ b

a
g(θ)x(θ)dθ =

∫ θ̄

θ
1{θ≤b}

(∫ b

max{a,θ} g(τ)dτ
)
dx(θ).
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1

2θ

∫ θ

θ

[∫ θ

θ
(1− F (t)− tf(t))dt

]
dπ2(θ) + θ̄m

1− 1

θ̄
+

∫ θ
θ (1− π2(θ)) dt

θ̄


=

1

2θ

∫ θ

θ

[∫ θ

θ
(1− F (t)− tf(t))dt

]
dπ2(θ) + θ̄m(2− 1

θ̄
)−m

∫ θ

θ
π2(θ)dθ

=

∫ θ

θ
{ 1

2θ

[∫ θ

θ
(1− F (t)− tf(t))dt

]
−m(θ − θ)}dπ2(θ) + θ̄m(2− 1

θ̄
)

Therefore, we can rewrite the optimization problem as

maxπ2(θ)

∫ θ
θ Φ(θ)dπ2(θ)

s.t.

π2(θ) : Θ → [0, 1] is non-increasing

where Φ(θ) = 1
2θ

[∫ θ
θ (1− F (t)− tf(t))dt

]
−m(θ − θ).

The optimization problem consists of maximizing a linear functional subject to a non-increasing

function ranging from [0, 1]24. By the infinite-dimensional extension of Carathéodory‘s theorem25,

it follows that there exists an optimal allocation rule that is one of the extreme points of the set of

non-increasing functions ranging from [0, 1], where imπ2 ⊆ {0, 1}26. With the previous conclusions,

we know that π∗
2(θ) = 1 on θ ∈ [θ, θ∗) while π∗

2(θ) = 0 on θ ∈ [θ∗, θ] for some θ∗ .

Given the functional form of π∗
2(θ), tθ =

θ
2θ
(1−π2(θ))+tθ−

∫ θ
θ (1−π2(t))dt

2θ
, and the tiered-pricing

structure of the optimal mechanism, we can derive that the optimal mechanism features two tiers

with λ(θ) = θ∗ for any θ ∈ [θ, θ∗).

Therefore, we can further rewrite the optimization as choosing an optimal two-tier pricing

mechanism. The designer selects an optimal threshold θ∗ to maximize her revenue.

maxθ∗,tθ,t∗ tθF (θ∗) + t∗ (1− F (θ∗))

s.t.

m−mπ1 (θ)− tθ = 0

tθ +
1
2π1(θ) = t∗

π1 (θ) =
θ∗

θ

24Formally, if πi
2 is the solution to optimization, for i ∈ {1, 2}, then απ1

2 + (1− α)π2
2 is a solution to problem, for

any α ∈ (0, 1).
25See more details in C.1.2
26See more details in C.1.1
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Substitue these components and we have

mF (θ∗)−mπ1 (θ)F (θ∗) +
[
m+

(
1
2 −m

)
π1 (θ)

]
(1− F (θ∗))

= m+
(
1
2 −m

)
π1 (θ)−

(
1
2 −m

)
π1 (θ)F (θ∗)−mπ1 (θ)F (θ∗)

= m+ π1 (θ)
(
θ − 1

2F (θ∗)
)

= m+ θ∗

θ

(
θ − 1

2F (θ∗)
)

Therefore the optimal mechanism is that

θ∗ ∈ argmaxθ θ
(
θ − 1

2F (θ)
)

π1 (θ) =
θ∗

θ
and π2 (θ) = 1

C Appendix: Completion of the Omitted Details in Proof

C.1 Completion of the proof of Theorem 2

In the proof of theorem 2, we transform the optimization into maximizing a linear functional subject

to a non-increasing function. Here we refer to an infinite-dimensional extension of Carathéodory’s

theorem found in Kang (2023).

Here we state the omitted proof of two conclusions to complete the proof of theorem 2, where

we refer to the proof in Kang (2023).

C.1.1 Extreme Points of Π = {π|π : Θ → [0, 1], π is non-increasing}

Denote P = {π|π : Θ → [0, 1], π is non-increasing, and imπ ⊆ {0, 1}}.

Proof of P ⊆ exΠ

Suppose that π ∈ P, and π = απ1 + (1 − α)π2 for π1, π2 ∈ Π and α ∈ (0, 1). Then απ1(θ) +

(1−α)π2(θ) = π(θ) ∈ {0, 1} for almost every θ ∈ [θ, θ] , which implies that π1 = π2 = π for almost

everywhere on Θ. Hence π ∈ exΠ.

Proof of exΠ ⊆ P

For any π ∈ Π satisfying m({θ|x(θ) /∈ {0, 1}}) > 0, where m is the Lebesgue measure. Define

π1, π2 : Θ → [0, 1] by π1 = π2 and π2 = 2π−π2 ; by construction, π1, π2 ∈ Π and π = (π1 + π2) /2.

Note that π1 ̸= π2. Therefore π = (π1 + π2) /2 where π1, π2 ∈ Π are distinct; hence π /∈ exΠ.

Therefore P = exΠ.

C.1.2 An Infinite-dimensional Extension of Carathéodory Theorem

Theorem 3. Let K be a convex, compact set in a locally convex Hausdorff space, and let l : K →
Rm be a continuous affine function such that

∑
⊆ im l is a closed and convex set. Suppose that
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l−1(
∑

) is nonempty and and that Ω : K → R is a continuous convex function. Then there exists

z∗ ∈ l−1(
∑

) such that Ω(z∗) = maxz∈l−1(
∑

)Ω(z) and

z∗ =
∑m+1

i=1 αizi, where
∑m+1

i=1 αi = 1, and for all i, αi ≥ 0, zi ∈ exK

Proof. See in Bauer (1958) and Szapiel (1975).

Kang (2023) shows that these three conditions (convexity, compact in the L1 topology, and the

existence of the optimal mechanism) are satisfied in a mechanism design with transferable utility

setting Therefore we can apply Carathéodory Theorem to our problem.

C.2 Completion of Lemma 7, 10 and 11

To guarantee the validity of the transitivity (of monotonicity) across different [θ, λ(θ)) in lemma 7,

and the existence of the intervals in lemma 10 and 11, it remains to exclude one situation where

for all θ̂ ∈ [θ, λ(θ)), λ(θ̂) = λ(θ) when λ(θ) ̸= λ(λ(θ)).

IC[θ̂ → λ(θ)] holds for all θ̂ ∈ [θ, λ(θ)), which requires that

V (Eθ, λ(θ))− tθ ≥ V (Eλ(θ), λ(θ))− tλ(θ)

Combined with IC[λ(θ) → θ], we have

−1
2π1(θ)− tθ = −λ(θ)π2(λ(θ))−mπ1(λ(θ))− tλ(θ)

Combining the two facts (i) IC[γ(θ) → θ] is binding while IC[γ(θ) → λ(θ)] may not , and (ii)

IC[γ(λ(θ)) → λ(θ)] is binding while IC[γ(λ(θ)) → θ] may not, we have

−1
2π1(θ)− tθ = −1

2π1(λ(θ))− tλ(θ)

By λ(λ(θ)) > λ(θ), we have

−1
2π1(θ)− tθ = −λ(θ)π2(λ(θ))−mπ1(λ(θ))− tλ(θ) > −1

2π1(λ(θ))− tλ(θ) = −1
2π1(θ)− tθ

So it is contradictory.
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