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ABSTRACT. This paper studies information design in a dynamic moral hazard environ-

ment. An agent and an expert face a common uncertainty regarding the effectiveness of a

collective decision. The agent bears the cost of effort of information acquisition and makes

the final decision. The expert is the only observer of research outcomes and provides in-

formation over time to the agent. Both parties are equally affected by the decision. I show

that one optimal information policy consists in disclosing truthfully with delay. In the first

periods of time, the delay is zero, then strictly increases and finally vanishes. By the time

the delay decreases back to zero, the agent has taken the decision with probability one.
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1. INTRODUCTION

When a decision has to be made under uncertainty, information acquisition has to be

conducted in order to improve the effectiveness of choice. Sometimes, experts are pri-

vately informed of research outcomes. On one hand, experts are delegated to conduct

information acquisition. On the other hand, only experts are able to fully process the re-

search outcome. Therefore, experts are normally supposed to publish research progress

report periodically. On one hand, such report ”puts the whole group on the same page”:

it helps the rest to understand research results and make more accurate decisions. On

the other hand, it also helps evaluate progress and decide whether or not to carry out

further exploration. There are many scenarios where the experts have more bargaining

power than the agent therefore have more freedom in writing the report. In the first

category of scenarios, an expert raises funds from many investors to conduct informa-

tion acquisition. For instance, during the COVID-19 pandemic, vaccine producers raise

funds from multiple governments to conduct research and they are supposed to publish

their experiment outcomes periodically. There are few vaccines which have entered into

the final period of experiments, while all the governments are eager to get the first batch

of vaccines to re-open the economy. The second category of scenarios considers feedback

provision. Supervisors make comments on PhD students’ projects, based on which stu-

dents decide whether or not to keep exploring. Financial advisors acquire information

of retail investors’ risk averse degree through asking several related questions. Then

they provide recommendations on financial products and portfolios. In my paper, the

agent faces uncertainty in making a once-for-all choice between two options. The agent

exerts effort to conduct dynamic information acquisition and the expert is privately in-

formed of the research outcome. There are two states of the world and both players

prefer to match the option with the state. The statistical experiment, which is fixed at

each period, generates either a breakthrough signal for one state or its absence. The

expert needs to report the progress at each instant. I characterize the expert’s optimal

dynamic research progress reporting policy, if she can commit to one at the beginning of

game.

While both players share the same preferences in decision making, the expert does not

bear the cost of information acquisition. Therefore, she prefers a more accurate deci-

sion than the agent does. This preference mis-alignment leads to departures from full

information disclosure. Information acquisition creates information value (benefit) but
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delays decision making (cost). As information acquisition continues, both the agent be-

comes more pessimistic of information value created in the future and the agent’s payoff

of immediate decision making increases. These two components discourage the agent’s

further exploration. What information design can do? On the benefit side, the expert

can hoard information value created in previous periods and then release it in later pe-

riods. On the cost side, the expert can persuade the agent to become more uncertain

of the underlying state and therefore make the agent reluctant to make decision right

away. I elaborate on these two channels in a three-period model.

In the continuous time model, I show that there is an optimal disclosure policy where

the expert truthfully reports with delay. The whole research process is divided into three

phases. In the first phase, the delay level is kept at zero. Then it strictly accumulates

in the second phase. In the third phase, the delay level shrinks strictly. At the end

of the third phase, the delay has completely vanished and the decision is taken with

probability 1. Moreover the delay level in the second and third phase is designed such

that at each instant, the agent is indifferent between acquiring information for another

instant and making decision right away.

Under the optimal reporting policy, a knowledge gap arises since the second phase. I

adopt the expected hoarded information value to measure the gap. In the first phase,

the expert reveals all she has learnt immediately. In the second phase,1 the expert gen-

erates just enough information value to balance the agent’s opportunity cost for further

exploration. Besides, she hoards the rest of the created information value. Therefore,

the expected hoarded information value accumulates. In the third phase, the expert

generates all the information value created through information acquisition at that in-

stant. In addition, she releases the previously hoarded information value, to fill up the

gap between the opportunity cost and the created information value. At the end of the

third phase, the expected hoarded information value vanishes completely.

To motivate the agent to acquire information in the absence of breakthrough signal, the

expert has to postpone disclosing breakthrough signal even if she prefers to reveal it

immediately. That’s where commitment power plays a critical role in shaping the opti-

mal policy. However, when the decision-making payoff upon receiving the breakthrough

signal is large enough, the expert is more reluctant to postpone its disclosure. In other

words, the expert will put off the critical time where information value hoarding begins.
1The turning point here between the second and third phase is different from the one in describing the
delay level in the last paragraph.
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Facing limited amount of hoarded information value, the expert then turns to persua-

sion to improve the agent’s uncertainty of the underlying state. Such persuasion will

make the agent reluctant to make decision right away and therefore decreases the op-

portunity cost. We show that there exists at most one instant at which persuasion in

conducted.

Finally, I extend the basic model to information structures with breakthrough signals

in both states.

1.1. Related literature. This paper studies information disclosure on a learning pro-

cess. If the belief space is taken as the state space, then my paper falls into the category

of disclosure of an evolving state where the agent responds to inter-temporal incentive.

Please check Table 1 for classifying literature on dynamic Bayesian persuasion.

Evolving state Persistent state

Responding to
inter-temporal incentive

My paper, Ball [2019]
Smolin [Forthcoming]

Zhao et al. [2020]
Basu [2017]
Bizzotto et al. [Forthcoming]
Orlov et al. [2020]
Au [2015]
Henry and Ottaviani [2019]
Escudé and Sinander [2020]
Che et al. [2020]

belief-based and short-lived
decision-maker

Che and Hörner [2017]
Glazer et al. [Forthcoming] None

Belief-based and long-lived
decision-maker

Renault et al. [2017]
Ely [2017] None

TABLE 1. Literature category

The first closest paper is Ball [2019]. His paper studies information design of an evolving

process in a repeated game. He shows that the optimal disclosure policy can be imple-

mented by truthful report with delay. There are two critical differences between his

paper and mine. First, in his paper, the underlying process is mean-reverting Ornstein-

Uhlenbeck process and both the sender and the receiver share a quadratic utility func-

tions. It is therefore without loss of generality to focus on the policy set of truthful

report with delay. In the basic model, we show that it is rather without loss of opti-

mality to focus on this policy set. However, when the payoff at breakthrough signal is

relatively large enough, the expert has to turn to persuasion to decrease the opportu-

nity cost, which can not be implemented by through truthful report with delay. Second,

the delay level in his paper strictly decreases and then maintained at zero. In other

words, the sender just exploits his informational advantage at the very beginning of the
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game and then release it gradually. Therefore, the information value hoarding phase is

missing in his model.

The second closest paper is Smolin [Forthcoming]. He studies information design on

a learning process in a stopping game. He assumes that the stage payoff is linear in

posterior while the outside option is fixed. In my paper, however, I assume that the stage

payoff is fixed while the outside option is convex in posteriors. Moreover, the sender,

in his paper, prefers to persuade the agent to keep working while my model assumes

that their preferences are mis-aligned only in a belief interval. Therefore the trade-

off between timeliness and accurateness is novel in my paper. Moreover, the devices

of both information value hoarding and persuasion, targeting at increasing benefit and

lowering opportunity cost respectively, is new in my model.

In the category of literature in which information disclosure is on an evolving state

and the agent is belief-based and short-lived, Che and Hörner [2017] and Glazer et al.

[Forthcoming] studies dynamic information design on social learning. In their papers,

the sender adopts information disclosure to internalize the externality of information

acquisition by each individual agent. There are two differences between my paper and

these papers. First, the long-run receiver’s memory implies that the information value

acts as consumables. Once some information value has been generated in previous pe-

riods through information disclosure, then this part of information value can not be

released again. Second, the inter-temporal incentive is missing in their papers when it

comes to the design of ”carrot” and therefore the component on the benefit side is ab-

sent. The second component is also absent in the subcategory of literature of dynamic

information design on Makovian transition process with belief-based agent (c.f. Renault

et al. [2017] and Ely [2017]). In these papers, a patient sender discloses a Markovian

process to a long-lived agent at each period. The agent is supposed to take action at each

period, which is purely based on his updated beliefs at that period.

My paper is related to the literature category where information disclosure is on a per-

sistent state and the agent responds to inter-temporal incentives. Zhao et al. [2020]

studies how a sender can make the most of a single piece of private information to mo-

tivate a long-run receiver to take a single action as frequently as possible. Orlov et al.

[2020] and Bizzotto et al. [Forthcoming] study how a sender discloses information of a

persistent state in responding to the exogenous flow of public information. Au [2015]

and Basu [2017] consider the scenario where the receiver is privately informed. Finally,

there is a category of literature which imposes both the cost and the restrictions on
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information structure of statistical experiment conducted by the sender. Henry and Ot-

taviani [2019] and Escudé and Sinander [2020] assign this cost to the sender and restrict

information structures to the set of Gaussian processes. Che et al. [2020] analyze the

scenario in which the cost is borne by the receiver and restrict the information structure

to the set of Poisson processes.

More broadly, my paper adopts the belief-based approach which is first developed by

Aumann et al. [1995] and then utilized by Kamenica and Gentzkow [2011]. Finally, my

paper is related to the literature of delegated information acquisition (c.f. Angelucci

[2017], Yang [2019], Clark [2016], Chade and Kovrijnykh [2016] and Zhao and Zhao

[2019]). However, the key difference lies in the fact that my paper assumes that it is

the expert rather than the agent who has the commitment power, while their papers

assume the opposite.

2. MODEL

The agent faces uncertainty in making a once-for-all decision, which affects both the

agent and expert equally. Denote the set of options A := {a1, a2} and the set of states

as Ω := {ω1, ω2}. Initially, both players assigns probability p0 ∈ [0, 1]. The common

preference of both the agent and expert is given by Table 2.

TABLE 2. Payoff structure

State

Payoff Policy
a1 a2

ω1 1 0
ω2 0 1

If the choice a matches the state ω̃ of the world, then their payoff is 1. Otherwise their

payoff is 0. Denote by m(p) the maximal utility under optimal choice given belief p.

Specifically, m(p) is

m(p) =

1− p p ∈
[
0, 1

2

)
p p ∈

[
1
2
, 1
]

Finally, denote the discount factor by ρ. Therefore, if the agent puts off decision-making

till time t, then their payoffs are discounted by e−ρt.
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TABLE 3. Information structure

State
Signal

sa sb

ω1 1− λdt λdt
ω2 1 0

2.1. Information acquisition. The agent can exert effort with cost c to acquire infor-

mation before making the collective choice. If effort is exerted between t and t + dt, a

signal is generated according to the following information structure

This signal is privately observed by the expert. If the expert forms some belief pt at time

t, then with probability (1 − pt)λdt does the expert privately observe the breakthrough

signal sb and believe that the state is exactly ω1. Otherwise, the expert receives its ab-

sence signal sa and updates her belief pt+dt with increment dpt = pt+dt − pt = λpt(1−pt)dt
1−λ(1−pt)dt .

This leads to the ordinary differential equation (ODE)

ṗ = λp(1− p) (1)

I call research process P, the process with increment specified in Equation (1) and origin

p0. At time t, the process P passes belief pt = p0eλt

(1−p0)+p0eλt
.

My model also accommodates the case where p0 < 1
2
. However, there exists a lower

bound p
0

below which the agent will make decision immediately. We offer a full char-

acterization of p
0

in Appendix. Throughout the paper, we only consider the case where

p0 > p
0
.

2.2. Reporting policy. The expert, being privately informed of the research progress,

is supposed to issue a report at the end of each period. Given any measurable message

space M , denote a history component at time t by ht = (st,mt) ∈ S ×M , where st is the

generated signal at time t and mt is the sent message at time t. ht = (ht′)t′<t summarizes

all previous histories by time t, provided that the agent has acquired information up to

time t. Besides, denote by H t the set of all previous histories ht by time t. A dynamic

disclosure policy (π,M) then specifies

πt : H t × S → ∆(M), ∀t ≥ 0,

which maps the set of previous histories by time t and the signal generated at time t

to probability distribution space on message space M . Throughout the paper, I assume

that the expert has all the bargaining power and can commit to any dynamic reporting
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policies at the beginning of the game. Denote C as the the action of pending decision-

making. I will show it later that it is without loss of generality to restrict M to A ∪ {C}.

Given a dynamic reporting policy (π,M), denote by htm = (mt′)t′<t previous history of

messages by time t and H t
m the set of all previous histories of message by time t. A

decision rule α then specifies

α0 : ∅ → ∆ (A ∪ {C})

αt : H t
m ×M → ∆(A ∪ {C}) ∀t > 0

.

At time t, the agent, upon receiving message history htm by time t and the message mt

at time t, decides whether or not keep acquiring information. If not, he needs to choose

between option a1 and a2.

Given policy (π,M) and decision rule α, denote by παt (ht, st,mt|ω) the joint probability

that the previous history by time t is ht, the signal geneated at time t is st, the sent

message at time t is mt and the agent keeps acquiring information by time t, conditional

on state ω. Finally, denote the aggregate discounted frequency of option a ∈ A being

selected conditional on state ω by Y α(a|ω), which is given as

Y α(a|ω) =

∫ ∞
t=0

∫
ht∈Ht

∫
mt∈M

e−ρt
[
παt (ht, sb,mt|ω) + παt (ht, sa,mt|ω)

]
αt(a|htm,mt)dmtdh

tdt.

The discounted information acquisition cost is given by

c
∑
ω

p0(ω)

∫ ∞
t=0

∫
ht∈Ht

∫
mt∈Mt

e−ρt
[
παt (ht, sb,mt|ω) + παt (ht, sa,mt|ω)

]
[1−

∑
a∈A

αt(a|htm,mt)]dm
tdhtdt

=c

[
1

ρ
−
∑
ω∈Ω

∑
a∈A

p0(ω)Y α(a|ω)

]

The expert then solves the following optimization problem

max
(π,M),α

p0Y
α(a2|ω2) + (1− p0)Y α(a1|ω1)

s.t. α ∈ argmaxα′p0Y
α′(a2|ω2) + (1− p0)Y α′(a1|ω1)− c

[
1

ρ
−
∑
ω∈Ω

∑
a∈A

p0(ω)Y α′(a|ω)

]

Please note that whenever there are multiple optimal decision rule α given reporting

policy (π,M), the agent is assumed to pick expert’s most preferred ones.

2.3. Application. My model imposes a strong assumption on the expert’s bargaining

and committing power in designing dynamic reporting policies. It can be applied to two

scenarios. In the first scenario, a single expert designs her dynamic research progress
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reporting policy when she raises funds from multiple investors to conduct information

acquisition. The second scenario studies dynamic feedback design.

2.3.1. Public fundraising on research. During the COVID-19 pandemic, vaccine pro-

ducers raise funds from multiple governments to conduct research on valid vaccines.

However, few vaccine producers have survived and entered into the third phase of ex-

periment. Many promising producers decided to stop further experimentation due to

serious side-effects found in clinical trial. However, almost all governments want to get

the first batch of vaccines to re-open the economy and ensure the safety of citizens. At

each period, the vaccine producers have to issue a periodical progress report on antibody

production effectiveness, side effects, clinical experiment results, etc. Based on the re-

port, these governments then decide whether or not fund vaccine research for another

period. If not, then these governments have to decide whether or not purchase the vac-

cine. The most advanced vaccine producer can have large bargaining power in designing

the reporting policy.

Many startup firms raise funds in primary market to incubate and develop their busi-

ness before IPO (initial pricing offering) issuance and entering into the secondary mar-

ket. Fundraising in primary market always involves multiple rounds of financing. It

starts with the angel round and continues with round A, B, etc. At the beginning of each

round, the entrepreneurs have to conduct roadshow to report their projects’ progress to

potential investors. These investors then decide whether to fund the project for another

round. If not, the investors decide whether to sell their possessed shares or not after the

entrepreneurs enter into the secondary market. Many unicorns, who have dominated

the market shares and/or proved itself of profit making, are popular in primary market.

They have more bargaining power and flexibility in designing their roadshow.

Similarly, listed and high-technology firms in NASDAQ raises funds from both retail

and institutional investors to conduct research. They are required to issue periodically

mandatory report or they are also expected to issue voluntary report, which discloses

their research progress. Such report affects either their share prices or the applicability

of new share issuance, which then determines whether they have collected enough funds

to conduct further exploration. These firms are always assumed in the literature to have

more bargaining and commitment power in designing both the contract and disclosure

policy.

Finally, crowdfunding is the practice of funding a project or venture by raising small

amounts of money from a large number of people, typically via the Internet. Some
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projects may involve multiple rounds of financing. For instance, Linux is a computer

system which promotes open source, security and free, in contrast to Mac OS and Win-

dows. There are multiple ways to finance the development of their systems. Elementary

OS, one of the most popular Linux distribution, offers free developed system but charges

fees if customers wants to experience the beta system in advance. The developers charge

first batch of 25 USD and then 10 USD each month for subscription. In reciprocal, the

developers have to issue updates and share with all the backers.

Throughout the paper, I assume that the expert can commit to dynamic reporting policy

in the beginning of the game. This assumption is justified by either law enforcement

and monitoring or by reputation motivation. Reputation matters for experts and any

inconsistency or lie may damage their career. Entrepreneurs also care about reputation

and credit, otherwise they may find it harder or even impossible to get finance or sell

their products in the future.

2.3.2. Dynamic feedback design. Retail investors may come to the bank to purchase

some financial products. They have to turn to financial advisors for recommendations

of financial products. However, both investors and financial advisors have no idea of in-

vestors’ risk averse degree. The financial advisors then ask the investors several ques-

tions and the investors have to consume both time and effort to answer these questions.

Investors’ answers can reveal information about their risk averse degree but can only be

evaluated by the financial advisors. Finally, the financial advisors then makes recom-

mendations on financial products and portfolios to the retail investors. Currently, more

and more retail investors conduct such purchase online and AI has already replaced

these financial advisors.

First-year PhD students have to choose a field to conduct research, between micro-

economics and macro-economics or between theory or empiric, etc. However, they may

not know at which field they are more talented. Therefore, they exerts effort and time

to attend courses in both fields, and course directors offers exercises and exams for feed-

backs. Course directors can control informativeness of these feedbacks through two

ways. First, they can design the difficulty and content coverage of these tests. On the

other hand, they can also choose how to disclose students’ performances in exams. The

informativeness is restricted by the depth and width of students’ knowledge in a given

field, which is positively related to the amount of time and effort students have exerted

in studying the subject.
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Role-playing games (RPG) are also designed to accommodate different types of players.

Therefore, game developers introduce several professions and positions. Players are

supposed to choose the most appropriate one to improve their gaming experience. How-

ever, players may not know at which position they are more talented. In order to make

a better choice, players have to exert effort to learn features of different professions and

positions. Game developers then design feedback mechanism to help players learn more

about themselves and therefore make more accurate choices. For instance, game de-

velopers control level of difficulty of quests and challenges during the experience phase.

Many online MOBA gaming (for instance, DOTA and LOL, which offer a platform where

a group of players combat with the other.) can design the matching mechanism through

controlling the level of both teammates and opponents. Based on the performance, the

players acquire more information of their own types, which then enables them to make

more accurate decisions.

2.4. Preference mis-alignment. Even if the collective choice affects the expert and

agent equally, the expert prefers a more accurate choice making since she does not bear

the cost of information acquisition. Given belief pt at time t and under perfect infor-

mation disclosure, compare the payoff between acquiring information for dt period and

making decision immediately. The payoff difference is

− cdt+ e−ρdt
[
pt
pt+dt

m(pt+dt) +

(
1− pt

pt+dt

)
m(0)

]
−m(pt)

= e−ρdt
[
pt
pt+dt

m(pt+dt) +

(
1− pt

pt+dt

)
m(0)−m(pt)

]
︸ ︷︷ ︸

Benefit

−

cdt+ ρm(pt)dt︸ ︷︷ ︸
time cost


︸ ︷︷ ︸

Opportunity cost

On the benefit side, information acquisition enables more accurate choice making, there-

fore creating information value. On the cost side, it also puts off decision making,

making it absent the flow payoff ρm(pt)dt of decision making at time t. I denote this

part of opportunity cost as time cost, which is strictly increasing in payoff of immedi-

ate decision-making. In addition, the opportunity cost for the agent also includes the

information acquisition cost. Denote by qR = λ
λ+ρ

the belief where the created informa-

tion value (benefit) balances the time cost (opportunity cost for the expert). Denote by

qP = λ−c
λ+ρ

the belief where the created information value (benefit) balances the total of

time cost and information acquisition cost (opportunity cost for the agent). Our next

lemma solves the optimal stopping problem for both the expert and the agent respec-

tively.
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Lemma 1. Under perfect revelation of signals, the agent stops information acquisition

at qP , upon not receiving breakthrough signal sb. The expert prefers the agent to stop

information acquisition at qR upon not receiving breakthrough signal sb.

The fact that qP < qR implies that the expert prefers a more accurate choice making

than the agent. As the agent keeps acquiring information, it becomes harder to make

research progress and the created information value therefore decreases. At the same

time, the uncertainty about the state keeps resolving and the time cost therefore in-

creases. Such trend will remain if the agent keeps acquiring information.

FIGURE 1. Information value and time cost

Their preferences are mis-aligned in interval (qP , qR), where the agent prefers to make

decision right away while the expert prefers to acquire more information. The expert

prefers to prolong information acquisition at that interval. What information design

can do? On the benefit side, in addition to the information value necessary to balance

the opportunity cost for information acquisition, there is remaining part in early periods.

The expert can hoard this part of information value and release it in later periods. On

the cost side, the expert can persuade the agent that his payoff of immediate decision-

making is low enough. Such information disclosure can therefore decreases his time

cost and therefore the opportunity cost for information acquisition. I will elaborate on

these two components in a three-period toy model in the next section.

3. EXAMPLE

In this section, I consider a three period, discrete version of the model. We keep the pay-

off structure and signal space S the same. However, information structure of statistical
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experiment is revised as follows,

TABLE 4. Discrete version information structure

State
Signal

sa sb

ω1 1− e−λ e−λ

ω2 1 0

Under the information structure, the prior belief pt at time t jumps either to belief 0 or

to belief pt+1 given as

pt+1 = f(pt) :=
pt

(1− pt)(1− e−λ) + pt
.

To make things interesting, let me introduce the following assumptions on p0.

Assumption 1. The agent, being perfectly informed of research progress, prefers to stop

exerting effort and make choice at the end of the first period. However, the expert prefers

the agent to put off collective choice making till the end of the second period.2

The information value created through information acquisition in the second period is

not enough to cover the opportunity cost. To motivate the agent to acquire information in

the second period, a component on the benefit side is proposed, i.e. information hoarding.

Intuitively, the expert can hoard additional information value created in the first period

and then release it in the second. Specifically, let me define q∗ as follows,

1

1 + δ
m(q∗)︸ ︷︷ ︸

time cost

+
1

1 + δ
c︸ ︷︷ ︸

information acquisition cost

=
δ

1 + δ

[
q∗

f (2)(p0)
m(f (2)(p0)) +

(
1− q∗

f (2)(p0)

)
m(0)−m(q∗)

]
︸ ︷︷ ︸

discounted aggregate information value

=
δ

1 + δ

[
q∗

f(p0)
m(f(p0)) +

(
1− q∗

f(p0)

)
m(0)−m(q∗)

]
︸ ︷︷ ︸

discounted hoarded information value

+
δ

1 + δ

q∗

f(p0)

[
f(p0)

f (2)(p0)
m(f (2)(p0)) +

(
1− f(p0)

f (2)(p0)

)
m(0)−m(f(p0))

]
︸ ︷︷ ︸

discounted newly generated information value in third period

(2)

Consider a belief martingale which starts from belief q∗ and jumps to either belief 0 or

f (2)(p0). The first equality in Equation (2) means that the generated information value is

just enough to balance the opportunity cost. The second equality in Equation (2) means
2Mathematically, the following inequalities hold

m(p0) < − 1
1+δ+δ2 c+

δ+δ2

1+δ+δ2

[
p0

f(p0)
m(f(p0)) +

(
1− p0

f(p0)

)
m(0)

]
m(f(p0)) > − 1

1+δ c+
δ

1+δ

[
f(p0)
f(2)(p0)

m(f (2)(p0)) +
(
1− f(p0)

f(2)(p0)

)
m(0)

]
m(f(p0)) <

δ
1+δ

[
f(p0)
f(2)(p0)

m(f (2)(p0)) +
(
1− f(p0)

f(2)(p0)

)
m(0)

]
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that the generated information value can be divided into two parts. The first part is the

information value hoarded in the last period while the second part is the information

value created through information acquisition in the second period (which is realized

in the third period). Then I define the reporting policy τ I through specifying its belief

martingale. The induced belief martingale jumps to either belief 0 or q∗ at the end of the

first period.3 If the belief q∗ is reached, then the belief martingale jumps to belief 0 or

f (2)(p0) at the end of the second period. I illustrate the information value management

for policy τ I through Figure 2.

0 p0 q∗ f(p0)f (2)(p0)

FIGURE 2. Component on the benefit side, information hoarding.
The combination of red line and blue dashed line denotes the information
value created in the first period while the green dashed line is the one
created in the second period. At the end of the first period, the expert
hoards the blue dashed part. Then she releases it at the end of the second
period, generating the blue line. τ I generates the red line at the end of the
first period and the combination of blue and green line at the end of the
second period.

However, the additional information value in the first period may not be enough to fill up

the gap between opportunity cost and the information value created in the second period.

To determine the maximal hoardable information value created in the first period, let

me define the belief p such that

m(p0) = − c

1 + δ + δ2
+

δ + δ2

1 + δ + δ2

[
p0

p
m(p) +

(
1− p0

p

)
m(0)

]
.

If q∗ < p, then the agent will not acquire information in the first period, under policy τ I .

To fix it, a component on the cost side is proposed, i.e. persuading the agent that the

opportunity cost of information acquisition is low. Let me revise the belief martingale at

the end of the first period induced by reporting policy τ I . It is replaced by a compound

belief martingale, which jumps to either belief 0 or p. If p is reached, then it further

3If belief 0 is reached, then the belief martingale stays there.
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jumps to either f(p0) or q∗. The splitting between belief f(p0) and q∗ does not generate

any information value. However, this splitting decreases the payoff of immediate choice

making from m(p) to m(q∗) with probability f(p0)−p
f(p0)−q∗ , which therefore decreases the time

cost and therefore the opportunity cost for information acquisition. Let me denote the

corresponding reporting policy by τU , which is illustrated in the Figure 3.

0 p0 q∗ p

m(q∗)

m(p)

m(f(p0))

f(p0)f (2)(p0)

FIGURE 3. Component on the cost side, persuasion. The expert has
to generate the information value of the red line to motivate the agent to
acquire information in the first period. She hoards the information value
of blue dashed line. Next, she persuades the agent to lower his payoff of
immediate choice-making from m(p) to m(q∗) with probability f(p0)−p

f(p0)−q∗ . At
the end of the second period, the expert generates information value in
combination of blue and green line.

Proposition 1. Whenever full information disclosure policy is not optimal,4 if q∗ ≥ p,

then τ I is optimal, if q∗ < p, then τU is optimal.

In order to bridge the gap between created information value in the second period and

opportunity cost, the expert has to hoard information value created in the first period.

Only when this amount of hoarded information value is not enough does the expert

persuade the agent that his payoff of immediate decision-making is low.5

There are two elements present in infinite period but missing in three-period model.

First, to induce the agent to acquire more information, the expert can start to hoard
4This is true when q∗ < p′, where p′ is such that,

δ2

1 + δ + δ2
p0

f(p0)

[
f(p0)

f (2)(p0)
m(f (2)(p0)) +

(
1− f(p0)

f (2)(p0)

)
m(0)−m(f(p0))

]
− δ

1 + δ + δ2
p0

f(p0)
m(f(p0)) =

δ

1 + δ + δ2
p0
p′
(1−

p′

f(p0)
)m(0)

5The combination of information value as a carrot and persuasion in dynamic information design has
been found in Ely and Szydlowski [2020] and Zhao et al. [2020]. In the former paper, the initial disclosure
persuades the agent to be sufficiently optimistic of task easiness. In the later paper, the initial disclosure
persuades the agent that the opportunity cost of exerting effort is low enough.
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information in earlier periods, which therefore increases the pool of hoarded informa-

tion value. Or, the expert, when facing limited amount of hoarded information value,

can persuade the agent to lower his payoff of immediate decision-making and therefore

the opportunity cost of information acquisition. Which tool should the expert turn to?

Second, how does the expert hoard and release information value? Should the expert

hoard information consecutively or intermittently? How much information value to be

hoarded or released at each period? In the next section, we fully characterize the optimal

disclosure policy in continuous time model.

4. MAIN RESULT

This section is divided into four subsections. In the first subsection, I completely pin

down the belief martingale induced by an optimal reporting policy. The second subsec-

tion sheds light on the information value management implied by the optimal reporting

policy. The third subsection shows that one can implement the optimal reporting policy

through truthful report with delay. In the forth subsection, I give a sketch of the proof.

4.1. Construction of optimal reporting policy. In this subsection, I construct one

optimal reporting policy through the induced belief martingale. As first step, a belief

process named ”one-step-ahead” process, similar to the definition of q∗, will be defined.

As second step, a reporting process is defined as the lower envelope of research pro-

cess and one-step-ahead process. Finally, it is shown that one optimal reporting policy

induces a belief martingale which either jumps to 0 or follows one reporting process.

4.1.1. One-step-ahead process. Recall that q∗ is defined by the following property. Con-

sider a belief martingale which starts from q∗ and jumps to either 0 or f (2)(p0), the gen-

erated information value is just enough to balance the opportunity cost for the agent.

Similarly, let me define one-step-ahead (belief) process Q. Consider a belief martingale

which starts from qt ≥ 1
2

and jumps to either 0 or moves up by some increment dqt,

the one-step-ahead process then specifies the increment dqtwhich makes the agent indif-

ferent between making decision immediately and acquiring information for another dt

period. Mathematically, dqt solves the following equation,

m(qt) = −cdt+ e−ρdt
[

qt
qt + dqt

m(qt + dqt) +
dqt

qt + dqt
m(0)

]
.

This leads to the ODE

q̇ = q(ρq + c) (3)
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The increment is strictly increasing in both discount factor ρ and c. This is due to the

fact that the increment is set such that the generated information value balances the

total of time cost, which is increasing in ρ, and research cost c.

I call one-step-ahead process Q, the process whose increment is specified in Equation (3)

if it is below 1 and is maintained as 0 once it passes 1. More specifically, one-step-ahead

process with origin q0 ∈ (0, 1) is

qt =


cq0ect

ρq0(1−ect)+c t ∈
[
0, 1

c
ln
(

ρq0+c
(ρ+c)q0

))
1 t ∈

[
1
c

ln
(

ρq0+c
(ρ+c)q0

)
,∞
) .6 (4)

Moreover, denote by Qt̂ the one-step-ahead process which passes through belief pt̂ at

time t̂, or with origin cpt̂e
−ct̂

ρpt̂(1−e−ct̂)+c
.7

4.1.2. Hitting time. For any process Y and any real number y, define passing time

T (y,Y) as the first time at which Y passes through y. Mathematically, it is defined

as

T (y,Y) := inf {t : Yt = y} .

For any t̂ ≤ T (qP ,P), define hitting time θ(t̂) as the last time at which Qt̂ hits P. Mathe-

matically, θ(t̂) is defined as

θ(t̂) := sup

t ≥ t̂ :
pt̂e

λ(t−t̂)

(1− pt̂) + pt̂e
λ(t−t̂)︸ ︷︷ ︸

P at time t

=
cpt̂e

c(t−t̂)

ρpt̂(1− ec(t−t̂)) + c︸ ︷︷ ︸
Qt̂ at time t

 .

The definition of θ(t̂) is interpreted in Figure 4.

In Figure 4, we see that θ(t̂) decreases as t̂ increases. I summarize this finding in the

following Lemma.

Lemma 2. For any t̂ ≤ T (qP ;P), the following holds

(i). For any t ∈ (t̂, θ(t̂)), Qt̂ is strictly below P, or qt < pt, ∀t ∈ (t̂, θ(t̂)).

(ii). θ(t̂) is strictly decreasing in t̂ and θ(T (qP ,P)) = T (qP ,P).

6The derivation of qt can be found in Appendix C.4.
7One can easily verify that

qt̂
t̂
=

c
cpt̂e

−ct̂

ρpt̂(1−e−ct̂)+c
ect

ρ
cpt̂e

−ct̂

ρpt̂(1−e−ct̂)+c
(1− ect) + c

= pt̂
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FIGURE 4. Hitting time θ(t̂). For any t̂1 < t̂2 < t̂3, we have that θ(t̂3) <

θ(t̂2) < θ(t̂1). Moreover, Qt̂ is strictly above than P below t̂ or above θ(t̂).
Otherwise, Qt̂ is strictly below P.

4.1.3. Reporting process. For any t̂ ≤ T (qP ,P), define a belief process Q(t̂) as the lower

envelope of P and Qt̂, or mathematically,

qt(t̂) = min
{
qt̂t, pt

}
, ∀t ≥ 0.

By Lemma 2, Q(t̂) is equal to P below t̂ and above θ(t̂). Besides, Q(t̂) is equal to Qt̂ in

interval [t̂, θ(t̂)]. We call t̂ as transition time and Q(t̂) as reporting process with transition

time t̂. Q(t̂) is shown in Figure 5.

FIGURE 5. Reporting process Q(t̂) with transition time t̂. Q(t̂) (red curve),
is a lower envelope of P (black curve) and Qt̂ (orange curve).

Define a belief martingale γ t̂ which either jumps to 0 or follows Q(t̂). The following

theorem shows that such a martingale is induced by some optimal reporting policy.
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Theorem 1. There exists a unique transition time t∗ such that one optimal reporting pol-

icy induces a belief martingale γt
∗. Moreover the agent will stop information acquisition

and choose a2 at θ(t∗), provided that his belief has not jumped to 0.

4.1.4. Determination of t∗. For any prior belief p0 and any time s ≥ 0, define function
g(s; p0) as the difference in payoff between acquiring information (and perfectly observ-
ing the learning outcome) till time s and making decision right away (and therefore
never acquiring information). Mathematically, g(s; p0) is defined as

g(s; p0) = ρ

∫ ∞
t=0

e−ρtmin
{
p0
pt
,
p0
ps

}
m(0)dt+ e−ρsm(ps)− c

∫ s

t=0

e−ρt
p0
pt
dt︸ ︷︷ ︸

Payoff of funding research till time s

−m(p0) (5)

Then, define t(p0) as the supremum of time s such that the payoff of acquiring informa-

tion till time s is strictly lower than that of making decision immediately. Mathemati-

cally, t(p0) is defined as

t(p0) := sup {s : ∀s′ ∈ (0, s), g(s′; p0) < 0} .

In the following corollary, we completely characterize t∗ and show its uniqueness.

Corollary 1. t∗ is uniquely determined and can be characterized as

t∗ = inf

t̂ ≥ t(p0) :
ρ

ρ+ c
− ce−(ρ+c)(θ(t̂)−t̂)

( pt̂
pθ(t̂)

)2
ec(θ(t̂)−t̂)

(ρ+ λ)(pθ(t̂) − qP )
− 1

ρ+ c

 ≤ 0

 .

To motivate the agent to acquiring more information and make more accurate decision,

the expert has to enlarge the pool of hoarded information and therefore bring forward

the time at which information value hoarding begins. However, this act puts off deci-

sion making and therefore discounts the realization of information value. Determining

the optimal transition time t∗ and therefore the optimal policy balances the trade-off

between timeliness and accurateness.

4.2. Information value management. Under the optimal reporting policy, the ex-

pert partially discloses what she has privately observed. Therefore a gap between the

expert’s and the agent’s knowledge emerges.

Definition 1. A knowledge gap is (p, q) with q ≤ p such that the agent’s belief is q while

the expert’s belief is p with probability q/p and 0 with probability 1− q/p.
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There is no knowledge gap before transition time t∗. Then the knowledge gap (pt, qt(t
∗))

emerges with probability p0

qt(t∗)
for any t ∈ (t∗, θ(t∗)). At the hitting time θ(t∗), the knowl-

edge gap vanishes and the agent completely stops acquiring information. To measure

the knowledge gap (p, q), define the hoarded information value S(p, q) as

S(p, q) =
q

p
m(p) +

(
1− q

p

)
m(0)−m(q) (6)

At time t, the expected hoarded information value s(t; t∗) is given

s(t; t∗) =

(
1− p0

qt(t∗)

)
S(0, 0) +

p0

qt(t∗)
S(pt, qt(t

∗)) =
p0

qt(t∗)
S(pt, qt(t

∗))

The expected hoarded information value s(t; t∗) is plotted in Figure 6.

FIGURE 6. Aggregate hoarded information value

As shown on Figure 6, there exists a turning point tS in the time interval (t∗, θ(t∗)), below

which the expected hoarded information value s(t; t∗) strictly increases, and above which

s(t; t∗) strictly shrinks.

Corollary 2. The expected hoarded information value s(t; t∗) satisfies the following

(i). s(t; t∗) ≡ 0 for t ∈ [0, t∗] ∪ [θ(t∗),∞);

(ii). Let tS = t∗ + 1
λ−c ln λ(1−pt∗ )

ρpt∗+c
be the turning point, we have that ∂s(t;t∗)

∂t
> 0 for all

t ∈ (t∗, tS) and ∂s(t;t∗)
∂t

< 0 for all t ∈ (tS, θ(t∗)).

From Corollary 2, the optimal reporting policy divides the whole time into three phases

based on the management of information value. The first phase occurs before transition

time t∗, the knowledge gap does not emerge and the expert truthfully reveal all what

she has privately observed in time. The second phase occurs in time interval (t∗, tS]. In

this phase, the expert releases information value just enough to balance the opportunity

cost, hoarding the additional information value. Therefore, the knowledge gap widens
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and the expected hoarded information value strictly accumulates. Finally, in the third

phase, the information value generated at each instant is comprised of two parts. The

first part is equivalent to the amount of information value created through information

acquisition at that instant. The other part is the previously hoarded information value,

which is released to bridge the gap between the first part and the opportunity cost.

During the third phase, the knowledge gap narrows and the expected hoarded informa-

tion value also shrinks. The third phase ends at the hitting time θ(t∗), when both the

knowledge gap and the expected hoarded information value vanish completely.

4.2.1. Comments on information value management. First, information hoarding is con-

centrated into a time interval rather than scattered over the whole process. Besides,

such time interval occurs just before the third phase, where the hoarded information

value is gradually released. This property is mainly due to discounting. Intuitively,

given the same amount of (undiscounted) information value being hoarded and the same

releasing time, the later it is hoarded, the less it will be discounted away. In order to

preserve the value of hoarded information value, the expert should put off hoarding in-

formation value as much as possible and the best way is to put it together in a continuous

period just before releasing the information value.

Second, at each instant in both the second and third phase, the expert motivates the

agent to conduct costly information acquisition by promising to generate information

value in the future just enough to cover the opportunity cost for the agent. Then, at

the next instant, the expert will at first release information value immediately to fulfill

her promise at the last instant. Such procedure is iterated until the pool of hoarded

information value is drained. To hoard information value, the experts has to garble

between belief 0 and pt and recommends for acquiring information. This implies that

unnecessary information acquisition has to be conducted and decision-making has to be

put off even if break-through signals have been received. These two distortions have to

be imposed to motivate the agent to further explore upon receiving sa.8 Fix the time at

which the agent stops information acquisition provided that his belief has not jumped

to 0. Subject to incentive compatibility constraint, such information value arrangement

leads to the fastest revelation of break-through signal sb and therefore alleviates these

two distortions to the most extent (which is shown in Lemma 4).
8Please note that the first distortion is not imposed on the expert directly since she does not bear the
research cost. However, to compensate the agent for unnecessary information acquisition, the expert has
to hoard more information value in the second phase. This therefore aggravates the second distortion.
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Finally, device on the cost side, i.e. persuasion, is absent. Such device is like a double-

edge sword. Given fixed amount of hoarded information value, persuasion, which splits

beliefs, leads to earlier and therefore less accurate decision with some probability, even

if it prolongs the length of acquiring information with the rest probability. In addition,

to motivate the agent’s further exploration, the expert can also bring forward the infor-

mation hoarding phase and therefore hoard more information value. Information value

hoarding is less costly than persuasion, which is shown in Lemma 5.

4.3. Implementation of the optimal policy. In this subsection, I show that the op-

timal reporting policy proposed by Theorem 1 can be implemented through truthfully

reporting with strategic delay. Specifically, for any t ∈ [0,∞), define a delay function

D(t; t∗) such that Q(t∗) at time t is consistent with research progress process P at time

t−D(t; t∗). Mathematically, D(t; t∗) is defined as the solution to the following equation,

pt−D(t;t∗) = qt(t
∗) (7)

First, since both Q(t∗) and P are strictly increasing in t, the delay function D(t; t∗) is

well defined. Figure 7 illustrates the definition of the delay function

FIGURE 7. Definition of delay function

In the following corollary, I show that, in the open interval (t∗, θ(t∗)), there exists a

turning point tD, below which the delay strictly increases and above which the delay

strictly decreases. It also shows that the optimal reporting policy can be implemented

by truthfully reporting the progress with delay D(t; t∗).

Corollary 3. Define the turning point tD = T (qP ,Q(t∗)), the optimal reporting policy

satisfies the following,
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(i). The expert commits to truthfully reporting the signals she observes D(t; t∗) periods

before;

(ii). The delay function D(t; t∗) is strictly increasing in t for any t ∈ (t∗, tD) and strictly

decreasing for any t ∈ (tD, θ(t∗)).

Corollary 3 implies that the implementation divides the whole process into three phases.

Suppose that the agent has not received a message confirming state ω1. In the first

phase, over the time interval [0, t∗), the expert commits to timely and truthfully report.

In the second phase, the delay strictly increases and reaches its maximum at the turning

point tD, where the agent forms belief qP . In the third phase, the delay strictly shrinks

until the hitting time θ(t∗), where the delay level completely vanishes. By the end of the

third phase, the agent stops information acquisition and make decision immediately.

Figure 8 shows how the optimal disclosure policy adjusts the delay of reporting with

time.

FIGURE 8. Delay function

To motivate the agent to explore further upon receiving sa, the expert has to postpone

the disclosure of breakthrough signal. Commitment power therefore plays a crucial

role in determining our optimal policy. Furthermore, the expert balances the trade-

off between timeliness of making decision at breakthrough signal and accurateness of

decision-making upon not receiving breakthrough signal.

4.3.1. Comparison to Ball [2019]. Even if the underlying state is persistent, the disclo-

sure is on the generated signals. My paper can therefore be regarded as the disclosure

of a Poisson process in a stopping game. Now I compare my paper to Ball [2019], who

studies the disclosure of a Brownian motion in a repeated game. Even if he also shows
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that the optimal disclosure policy is truthful but delayed report, there are two critical

differences, leaving behind the model formulation.

The first difference lies in dynamics of delay. In Ball [2019], a strictly positive delay

emerges abruptly at the beginning of the game. Then, it gradually shrinks down to zero.

After that, the delay is kept at zero. In my paper,the delay level is fixed at zero before

the transition time t∗ (in the first phase). Then, it strictly increases until the turning

point tD (in the second phase). Finally, it strictly shrinks down to zero, where the agent

makes decision and the game stops.

Second, the restriction of disclosure policy to the set of truthful and delayed report is

without loss of generality in Ball [2019] while it is, as I have shown, without loss of

optimality in my paper. Specifically, the underlying stochastic process in Ball [2019] is

mean-reverting Ornstein-Uhlenbeck process and utility functions are quadratic, there-

fore information disclosure boils down to precision control. Furthermore, the set of dis-

closure policy set of truthful and delayed report can recover any Bayesian plausible

disclosure policy in terms of precision control (Please check Theorem 1 in Ball [2019]).

However, since my model also involves designing what to be disclosed in addition to

precision control, there exist many disclosure policies which can not be implemented

through truthfully reporting with delay, like the policy τU in section 3 with the com-

ponent on the cost side, i.e. persuasion. However, Corollary 3 implies that truthfully

reporting with delay level D(t; t∗) weakly dominates other disclosure policies.

4.4. Sketch of the proof. In the first step, I focus on a subset of disclosure policies.

Lemma 3. Let Γ1 be the set of reporting policies such that the agent is induced to stop

acquiring information and makes a decision with probability 1. Furthermore, when he

does this on the equilibrium path, then

(1) The expert has already revealed all what she has observed.

(2) The agent’s belief is either 0 or in the interval [qP , qR].

There exists an optimal reporting policy in Γ1.

First, the expert does not prefer the agent to delay decision forever since she is strictly

impatient and gains utility only when decision is made.9 Second, the expert prefers

the decision to be made as accurately as possible. Therefore, on the equilibrium path,
9The assumption on the expert’s preference is different from that in Ely and Szydlowski [2020], where
the sender gains utility only when the receiver exerts effort.
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she will not hold up any information when the agent makes decision.10 Finally, their

preferences are perfectly aligned at belief p < qP and at belief p > qR. Both prefer

to conduct further information acquisition at belief p < qP and prefer to stop further

exploration at belief p > qR.

Given any policy (π,M), denote γ(π,M) the induced belief martingale. For any reporting

policy in Γ1, the agent has already stopped information acquisition and made decision

with probability 1 at time T (qR;P). Denote τ (π,M) = γ
(π,M)

T (qR;P)
the induced belief distri-

bution at time T (qR;P). I call τ the stopping belief distribution since it also gives the

distribution of beliefs at which the agent chooses to stop information acquisition. Fur-

ther, let me denote λ(π,M)(t) = γ
(π,M)
t (0), the probability that the agent believes the state

is exactly ω1 at time t. I call λ weight accumulation speed. For any reporting policy in

Γ1, both the agent’s and the expert’s payoffs are fully determined by the pair (λ, τ).11

Definition 2. A pair (λ, τ) is implementable if there exists a reporting policy in Γ1 with

weight accumulation speed λ and stopping belief distribution τ . Distribution τ is achiev-

able if there exists an implementable pair (λ, τ).

The second step of the proof derives the upper bound of λ for any achievable τ . I offer a

sketch of the construction of the policy in Γ1 and rigorous definition is in the appendix.

The policy induces a belief martingale which either jumps to 0 or transits based on the

following reporting process. It starts from the research process and then transits to the

one one-step-ahead process at some transition time t̂(τ). At time T (qP ;P), it splits to

generate beliefs with the corresponding weights, which recovers τ through the one-step-

ahead belief process thereafter. Figure 9 illustrates the policy.

Let me denote γ∗ as the induced belief belief distribution and (λ∗(·, τ), τ) the pair imple-

mented by the constructed policy.

Lemma 4. For any achievable τ , λ∗(t; τ) ≥ λ(t), ∀t ≥ 0, for any implementable (λ, τ).

Let me offer an intuition of the proof in discrete time. Suppose there exists some disclo-

sure policy (π,M) ∈ Γ1 which induces a belief martingale γ and implements (λ, τ), such
10Please note that some information may be held up at off-equilibrium path to serve as a threat when the
agent deviates.
11Specifically, the agent’s payoff U(λ, τ) and the expert’s payoff V (λ, τ) are given byU(λ, τ) = m(0)ρ

∫∞
s=0

e−ρsλ(s)ds+
∫ qR
qP

e−ρT (p;P)m(p)dτ − c
∫ T (qR;P)
0

e−ρt
[
1− λ(t)− 1(t≥T (qP ;P))τ

(
[qP , pt]

)]
dt

V (λ, τ) = m(0)ρ
∫∞
s=0

e−ρsλ(s)ds+
∫ qR
qP

e−ρT (p;P)m(p)dτ
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FIGURE 9. Reporting process achieving τ . The black curve is the research
process P and the blue curve is the reporting process. The splitting at
T (qP ;P) is designed such that the belief martingale which either jumps to
0 or follows the reporting process can achieve τ .

that λ(t) > λ∗(t; τ). First, the weight accumulating speed under full information disclo-

sure forms the upper bound among all plausible disclosure policies. Besides, λ∗(·; τ) is

the same as the one under full information disclosure before transition time t̂(τ), there-

fore t > t̂(τ).

Under disclosure policy (π,M), I call p active at time t if the agent still acquires infor-

mation when he forms belief p at time t. Denote PA,t the set of active beliefs at time t.

Moreover, define pA,t =
∫
PA,t

p
γt(PA,t)

dγt the expected active belief at time t. Similarly, one

can also define P ∗A,t the set of active beliefs and p∗A,t the expected active belief at time t

under our prescribed disclosure policy. Bayesian plausibility then implies thatλ(t)0 + 1(t≥T (qP ;P))

∫ pt
qP
pdτ + γt(PA,t)pA,t = p0 = λ∗(t; τ)0 + 1(t≥T (qP ;P))

∫ pt
qP
pdτ + γ∗t (P

∗
A,t)p

∗
A,t

λ(t) + 1(t≥T (qP ;P))τ
(
[qP , pt]

)
+ γt(PA,t) = 1 = λ∗(t; τ) + 1(t≥T (qP ;P))τ

(
[qP , pt]

)
+ γ∗t (P

∗
A,t)

Therefore, we have that γt(PA,t) < γ∗t (P
∗
A,t) and pA,t > p∗A,t. To motivate the agent to

conduct further exploration at time t, the expert has to promise an expected continuation

payoff strictly higher than m(p∗A,t) under (π,M). However, m(p∗A,t) is the future payoff

generated under my prescribed disclosure policy. This is possible only if there exists

another t′ > t such that λ(t′) > λ∗(t′; τ). If we iterate this procedure, then contradiction

arises since λ(t) and λ∗(t; τ) achieve the same upper bound τ(0) at the same time.

Let me denote Γ2 the set of all constructed policies (obtained by varying all achievable

τs). I then characterize the optimal achievable stopping belief distribution τ . I divide

the characterization into two steps. In the first step, I derive the optimal stopping belief

distribution τ given any transition time t̂. In the second step, I derive the optimal

transition time t∗.
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Lemma 5. For any transition time t̂, it is optimal to choose supp(τ) = {0, pθ(t̂)} among

all reporting policies in Γ2.

Lemma 5 implies that no further splitting of beliefs should be conducted at time T (qP ;P).

Kamenica and Gentzkow [2011] implies that the optimal τ is characterized through

concavifying the expert’s continuation payoff at time T (qP ;P). I show that such payoff

function is strictly concave.

Let me denote Γ3 the subset of all policies in Γ2 without belief splitting at T (qP ;P). The

payoffs under these reporting policies are completely determined by the transition time

t̂.

Lemma 6. The optimal transition time is unique and is fully determined by the first

order condition.

Lemma 6 follows since the expert’s payoff is strictly concave with respect to the transi-

tion time t̂. Combining Lemma 3, 4, 5 and Corollary 1, Theorem 1 then follows.

4.5. General payoff structure. In this subsection, we consider a general payoff struc-

ture shown in Table 5.

TABLE 5. General payoff structure

State

Payoff Policy
a1 a2

ω1 u(a1;ω1) u(a2;ω1)
ω2 u(a2;ω1) u(a2;ω2)

Moreover, we assume a1 (a2) is optimal at state ω1 (ω2), i.e.u(a1;ω1) > u(a2;ω1)

u(a1;ω2) < u(a2;ω1)
.

Similarly, the one-step-ahead process Q is defined as

−cdt+ e−ρdt
[
qt
qt+dt

m(qt+dt) +

(
1− qt

qt+dt

)
m(0)

]
= m(qt).

We then derive the one-step-ahead process as

q̇t =
dqt
dt

=
qt[c+ ρm(qt)]

u(a1;ω1)− u(a2;ω1)
. (8)
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We can also derive the closed-form of the process Q as

qt =
[ρu(a2;ω1) + c] exp

(
ρu(a2;ω1)+c

u(a1;ω1)−u(a2;ω1)
t
)

ρ[u(a2;ω2)− u(a2;ω1)]
[
1− exp

(
ρu(a2;ω1)+c

u(a1;ω1)−u(a2;ω1)
t
)]

+ ρu(a2;ω1)+c
q0

.

Similarly, we define Qt̂ the one-step-ahead process which passes pt̂ at time t̂. We also

define Q̂(q) the one-step-ahead process with starting point q. The next result shows that

the main results in Theorem 1 still hold if u(a2;ω2) ≥ u(a1;ω1).

Proposition 2. If u(a2;ω2) ≥ u(a1;ω1), then there exists some t∗ such that one optimal

policy induces a belief martingale which either jumps to belief 0 or follows the process

min{P ,Qt∗}.

If u(a2;ω2) < u(a1;ω1), then the continuation payoff at time T (qP ;P) may not be concave.

We therefore need to adopt the persuasion channel to concavify this continuation payoff.

The following proposition describes the optimal policy when u(a2;ω2) < u(a1;ω1).

Proposition 3. If u(a2;ω2) < u(a1;ω1), then there exists some (t∗1, t
∗
2, q
∗) such that one

optimal policy induces a belief martingale which either jumps to 0 or

(1) At time interval [0, t∗2), it follows min{P ,Qt∗1};

(2) At time t∗2, it is split between pt∗2 and q∗;

(3) After time t∗2, it then follows min
{
P , Q̂(q∗)

}
.

FIGURE 10. Optimal Reporting Process

To motivate the agent to acquire information upon receiving sa, the expert has to post-

pone the disclosure of sb. However, when u(a1;ω1) > u(a2;ω2), the expert sacrifices more

when she puts off disclosing sb. Therefore, she prefers to put off the time at which in-

formation value hoarding starts, which then decreases the pool of hoarded information
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value. Facing limited amount of hoarded information value, the expert turns to per-

suasion to lower agent’s belief and therefore the opportunity cost. We show that there

exists at most one instant at which persuasion is conducted. Figure 10 illustrates the

reporting process.

5. EXTENSION

5.1. A more general signal structure. In this section, we allow for more general

information structure with breakthrough signals for both states. The signal space is

S = {b1, b2, a} and the information structure is given by Table 6.

State
Information structure Signal

b1 b2 a

ω1 λ(1− ψ)dt 0 1− λ(1− ψ)dt
ω2 0 λψdt 1− λψdt

TABLE 6. Generalized information structure. The signal b1 (resp. b2) fully
reveals the state ω1(resp. ω2)

Similarly, let me define generalized research process P̃ as the one which tracks the evo-

lution of beliefs, given that breakthrough signals have not been received. The corre-

sponding ODE is

dp̃t = λp̃t(1− p̃t)(1− 2ψ)dt (9)

It is without loss of generality to assume ψ < 1
2
. Further, one can derive the threshold

q̃P = λ(1−ψ)−c
ρ+(1−ψ)

(resp. q̃R = λ(1−ψ)
ρ+(1−ψ)

), beyond which the agent (resp. the expert) prefers to

stop information acquisition and make choice right away.

0 q̃t q̃t+dt

m(q̃t+dt)

m(q̂t+dt)

q̂t+dt 1

m(1)

FIGURE 11. Generalized one-step-ahead process. In the first step, q̃t is
split between 0 and q̂t+dt, depicted by the blue arrow. Such splitting gener-
ates information value of red line, which just covers the opportunity cost.
In the second step, q̂t+dt is split between 1 and q̃t+dt, depicted by the green
arrow.
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Given some knowledge gap (p̃t, q̃t) at time t, the expert will privately observe the signal

b2 with probability q̃t
p̃t
p̃tλψdt if the agent acquires information at t. Let me define a belief

martingale by the following two-step procedure. The starting belief is q̃t ≥ max
{
p0,

1
2

}
.

In the first step, it either jumps to 0 or moves up to q̂t+dt, generating information value

which just covers the opportunity cost. The increment dq̂t = q̂t+dt − q̂t is given by by

Equation (3). In the second step, q̂t either jumps to 1 with maximal probability, i.e.

λψq̃tdt, or moves down to q̃t+dt. This generalized one-step-ahead process has an increment

dq̃t = q̃t+dt − q̃t, given by

dq̃t = (ρ+ λψ)q̃t(q̃t − q)dt, (10)

where q = λψ−c
λψ+ρ

. The illustration of this belief martingale is depicted in Figure 11.

For any valid (t, q), let me denote Q̃(t, q) the generalized one-step-ahead process which

passes q at t.

Proposition 4. One optimal policy (π̃∗, M̃∗) is specified as follows. There exists (t̃∗, θ∗, q̃∗)

such that the splitting
(
q̃T (q̃P ;P̃)(θ

∗, p̃θ∗), q̃T (q̃P ;P̃)(θ
∗, q̃∗)

)
of the belief q̃T (q̃P ;P̃)(t̃

∗, p̃t̃∗) concavi-

fies the expert’s continuation payoff at time T (q̃P ; P̃). The expert reveals b2 perfectly when-

ever she has privately observed it. Otherwise, the induced belief martingale either jumps

to 0 or transits according to the following reporting process,

• For any t ∈ [0, t̃∗), follow P̃.

• For any t ∈ [t̃∗,+∞), follow the generalized one-step-ahead process until it hits

P̃, except that a splitting is conducted between p̃θ∗ and q̃∗ at time θ∗.

FIGURE 12. Optimal reporting process under generalized information
structure. The black curve is the research process. The segment of red
curve after the transition time t̃∗ is the generalized one-step-ahead process.
The red curve is the optimal reporting process.
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There are two key instants of the optimal policy in Proposition 4. The first key instant

is t̃∗, when the expert begins to hoard information value. The second key instant is θ∗,

when the expert persuades the agent to lower his payoff of immediate decision-making.

Besides, such splitting is related to concavification of expert’s utility at time T (q̃P ; P̃).

Figure 12 illustrates the optimal policy in Proposition 4.
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APPENDIX A. LOWER BOUND OF PRIOR p
0

Consider the case where the prior p0 <
1
2
. Note that if the prior p0 is too small, then the

agent prefers to make decision immediately instead of acquiring information. There are
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two reasons underlying the argument. For one thing, little uncertainty is involved, so
the payoff of immediate decision making is large, leading to large time cost; For another,
it takes too long for the learning process to create strictly positive information value (or
value), which highly discounts the created information value. Let me define P(p0) as the
research progress process with the starting belief p0. Furthermore, p

0
∈ (0, 1

2
) is defined

as the solution to the following equation

m(p
0
) = ρ

∫ ∞
t=0

e−ρt
(
1−max

{
p

0

pt(p
0
)
,
p

0

qP

})
m(0)dt+ e−ρT (qP ;P(p

0
))
p

0

qP
m(qP )− c

∫ T (qP ;P(p
0
))

0

e−ρt
p

0

pt(p
0
)
dt (11)

If p0 < p
0
, then the policymaker will never fund research and therefore always make

decision immediately.

Our next Lemma shows that p
0

is both well and uniquely defined.

Lemma 7. There always exists a unique solution to the Equation (11).

Proof. For any p0, define function M(p0) as

M(p0) := ρ

∫ ∞
t=0

e−ρt
(

1−max

{
p0

pt(p0)
,
p0

qP

})
m(0)dt+e−ρT (qP ;P) p0

qP
m(qP )−c

∫ T (qP ;P)

t=0

e−ρt
p0

pt(p0)
dt

Since M(1/2) > m(1/2) and M(0) < m(0), there always exists some p0 such that M(p0) =

m(p0) due to the continuity M(p0).

Furthermore, for any pair of (p0, p
′
0) such that 0 < p0 < p′0 <

1
2
, one have the following

M(p0) = ρ

∫ ∞
t=0

e−ρt
(

1−max

{
p0

pt(p0)
,
p0

p′0

})
m(0)dt+ e−ρT (p′0;P)p0

p′0
M(p′0)− c

∫ T (p′0;P)

t=0

e−ρt
p0

pt(p0)
dt

= ρ

∫ ∞
t=0

e−ρt
(

1−max

{
p0

pt(p0)
,
p0

p′0

})
m(0)dt+ e−ρT (p′0;P)p0

p′0
m(p′0)− c

∫ T (p′0;P)

t=0

e−ρt
p0

pt(p0)
dt

+e−ρT (p′0;P)p0

p′0
(M(p′0)−m(p′0)) < m(p0) + e−ρT (p′0;P)p0

p′0
(M(p′0)−m(p′0))

The inequality is due to the fact that

ρ

∫ ∞
t=0

e−ρt
(

1−max

{
p0

pt(p0)
,
p0

p′0

})
m(0)dt+ e−ρT (p′0;P)p0

p′0
m(p′0)

< ρ

∫ ∞
t=0

e−ρt
(

1− p0

p′0

)
m(0)dt+

p0

p′0
m(p′0) = m(p0)

Therefore, if M(p′0) ≤ m(p′0), then M(p0) < m(p0). �

APPENDIX B. TRADE-OFFS BALANCING

As is shown in Lemma 2, the hitting time θ(t̂) is decreasing in the transition time t̂.

Put it in other words, to motivate the agent to make more accurate decision, the expert

has to begin hoarding information value earlier. This may lead to unnecessary delay in
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decision making since the expert has to delay disclosing private signal of breakthrough.

Therefore, the optimal transition time t∗ is set so as to balance the trade-off between

earlier information hoarding and more accurate decision making. Specifically, one can

represent the expert’s payoff upon the reporting policy, specified in Theorem 1 but with

transition time t̂, as

W (t̂) = m(0)

∫ θ(t̂)

0

e−ρt
p0

qt(t̂)

dqt(t̂)

qt(t̂)dt
dt+ e−ρθ(t̂)

p0

pθ(t̂)
m(pθ(t̂)) (12)

= ρm(0)

∫ ∞
0

e−ρt

(
1− p0

min
{
qt(t̂), pθ(t̂)

}) dt+ e−ρθ(t̂)
p0

pθ(t̂)
m(pθ(t̂)) (13)

In the first line of the equation above, the term p0

qt(t̂)

dqt(t̂)

qt(t̂)dt
gives the probability that the

belief martingale jumps to belief zero exactly at time (t, t + dt]; In the second line, the

term 1− p0

min{qt(t̂),pθ(t̂)}
is the accumulating12 probability that the belief martingale has

already jumped to belief zero at time t. If the belief martingale is given by what is

specified in Theorem 1 with transition time t̂, then such probability is fixed at 1 − p0

pθ(t̂)

since hitting time θ(t̂). By the definition of reporting process Q(t̂), we have that 1 −
p0

min{qt(t̂),pθ(t̂)}
≤ 1 − p0

min{pt,pθ(t̂)}
, with strict inequality during time interval (t̂, θ(t̂)). Such

gap in accumulating probability is exactly brought up by unnecessary delayed decision

making.

By the definition of reporting process Q(t̂), the policymaker is indifferent between mak-
ing decision at any moment during in time interval [t̂, θ(t̂)], which therefore implies that∫ θ(t̂)

t̂

e−ρt
p0

qt(t̂)

dqt(t̂)

qt(t̂)dt
dt+ e−ρθ(t̂)

p0
pθ(t̂)

m(pθ(t̂))︸ ︷︷ ︸
Discounted payoff if making decision at θ(t̂)

− c

∫ θ(t̂)

t̂

e−ρt
p0

qt(t̂)
dt︸ ︷︷ ︸

Discounted research cost if funding until θt̂)

= e−ρt̂
p0
pt̂
m(pt̂)︸ ︷︷ ︸

Discounted payoff if making decision at t̂

.

Please note that the policymaker only funds the expert if he has not received a message

confirming the state being ω1 and the probability of the event at time t is given by p0

qt(t̂)
.

Introduce the equation above into (12), one can derive another form of the expert’s payoff

as

W (t̂) = m(0)

∫ t̂

0

e−ρt
p0

pt

dpt
ptdt

dt+ e−ρt̂
p0

pt̂
m(pt̂)︸ ︷︷ ︸

Discounted payoff of early making decision at t̂

+ c

∫ θ(t̂)

t̂

e−ρt
p0

qt(t̂)
dt︸ ︷︷ ︸

Research grant occupation

(14)

One can consider an artificial scenario in which the expert is able to occupy the research

grant in addition to policy impact on social welfare. The expert chooses when to stop

information acquisition and begin to embezzle research funds. The optimal transition
12By ”accumulating”, I mean that this probability is always increasing in time t;
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time t∗ is determined through balancing the payoff of early and therefore less accurate

decision making, and longer periods of research grants embezzlement.

APPENDIX C. MISSING PROOFS

C.1. Derivation of research progress process. If dpt = λpt(1 − pt)dt, then we have

that
dpt
pt

+
dpt

1− pt
= λdt⇒ d ln pt − d ln(1− pt) = dλt

⇒ d ln
pt

1− pt
= dλt⇒ pt

1− pt
=

p0

1− p0

eλt

⇒ pt = (1− pt)
p0

1− p0

eλt ⇒ (1 +
p0

1− p0

eλt)pt =
p0

1− p0

eλt

⇒ pt =

p0

1−p0
eλt

1 + p0

1−p0
eλt

=
p0e

λt

p0eλt + (1− p0)

C.2. Proof of Lemma 1. Denote Wt as payoff to the agent, who perfectly observes re-

search progress, if he chooses to stop research funding and make decision at time t, even

if he has not observed break-through signals. One then have that

dWt = Wt+dt −Wt

= e−ρt
p0

pt

{
e−ρdt [λ(1− p)dt m(0) + [1− λ(1− p)dt]m(p+ λp(1− p)dt)−m(p)]− cdt− ρm(p)dt

}
By the definition of qP , one then have that dWt > 0 when pt < qP and dWt < 0 when

pt > qP . Therefore Wt reaches its maximal value when pt = qP .

C.3. Proof of Proposition 1. In this subsection, we at first use the belief-based ap-

proach developed by Kamenica and Gentzkow [2011] to characterize the set of Bayesian

plausible information structure under imperfect information. Secondly, we then offer a

standard proof of Proposition 1.

C.3.1. Bayesian plausible information structure. Denote Vt as payoff to the expert, who

is delegated of decision making in research funding, if she chooses to stop research fund-

ing and make decision at time t. Similarly, one can show that Vt reaches its maximal

value when pt = qR.

Before proving proposition 1, we at first extend Bayesian plausibility condition proposed

by Kamenica and Gentzkow [2011] to scenario where sender is imperfectly informed.
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Lemma 8. Suppose both sender (She) and receiver (He) share a common prior p0. Be-

sides, the sender is further privately informed with information structure (π,S = {s1, s2}).

If receiving signal s1, she updates her belief to p1. Otherwise, she updates belief p2 ≥ p1.

Finally, she commits to some disclosure policy (π̃,M) before observing private signals. Be-

lief martingale γ can be induced by some disclosure policy if and only if supp(γ) ∈ [p1, p2]

and
∫ p2

p1
γ(p)pdp = p0.

Proof. Denote belief martingale α = (α(p1), α(p2)) as the one induced by information

structure (π,S). Bayesian plausibility α(p1)p1 + α(p2)p2 = p0 implies that α(p1) = p2−p0

p2−p1

α(p2) = p0−p1

p2−p1

In the first step, we prove ”if” direction. For one thing, the receiver receives messagem ∈

M with probability γ(m) = α(p1)π̃(m|s1) + α(p2)π̃(m|s2); For another, based on Bayesian

updating principle, the receiver updates his belief to

pm =
α(p2)π̃(m|s2)

α(p1)π̃(m|s1) + α(p2)π̃(m|s2)
p2 +

α(p1)π̃(m|s1)

α(p1)π̃(m|s1) + α(p2)π̃(m|s2)
p1 ∈ [p1, p2].

Moreover, we also have the following equation∫
m∈M

γ(m)pmdm =

∫
m∈M

γ(m)

[
α(p2)π̃(m|s2)

α(p1)π̃(m|s1) + α(p2)π̃(m|s2)
p2 +

α(p1)π̃(m|s1)

α(p1)π̃(m|s1) + α(p2)π̃(m|s2)
p1

]
dm

= α(p2)p2

∫
m∈M

π̃(m|s2)dm+ α(p1)p1

∫
m∈M

π̃(m|s1)dm = α(p2)p2 + α(p1)p1 = p0

In the second step, we prove ”only if” direction. For any belief martingale γ, let me

define an information structure (π̃, [p1, p2]) as follows
π̃(p|s1) =

γ(p)

α(p1)

p2 − p
p2 − p1

=
γ(p)
p2−p0

p2−p1

p2 − p
p2 − p1

= γ(p)
p2 − p
p2 − p0

π̃(p|s2) =
γ(p)

α(p2)

p− p1

p2 − p1

=
γ(p)
p0−p1

p2−p1

p− p1

p2 − p1

= γ(p)
p− p1

p0 − p1

, ∀p ∈ [p1, p2] (15)

At first, let me verify validity of the information structure (π̃, [p1, p2]). To show it, we

have that∫
p∈[p1,p2]

π̃(p|s1)dp =

∫
p∈[p1,p2]

γ(p)

α(p1)

p2 − p
p2 − p1

dp =
p2

∫
p∈[p1,p2]

γ(p)dp−
∫
p∈[p1,p2]

γ(p)pdp

α(p1)(p2 − p1)

=
p2 − p0

α(p1)(p2 − p1)
=
p2 − p0

p2 − p0

= 1

.

Similarly, one can also show that
∫
p∈[p1,p2]

π̃(p|s2)dp = 1. Secondly, we show that such

information structure (π̃, [p1, p2]) induces the belief martingale γ. This is true since if
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the receiver receives message p ∈ [p1, p2], then he updates his belief to

α(p1)π̃(p|s1)

α(p1)π̃(p|s1) + α(p2)π̃(p|s2)
p1 +

α(p2)π̃(p|s2)

α(p1)π̃(p|s1) + α(p2)π̃(p|s2)
p2

=
α(p1) γ(p)

α(p1)
p2−p
p2−p1

α(p1) γ(p)
α(p1)

p2−p
p2−p1

+ α(p2) γ(p)
α(p2)

p−p1

p2−p1

p1 +
α(p2) γ(p)

α(p2)
p−p1

p2−p1

α(p1) γ(p)
α(p1)

p2−p
p2−p1

+ α(p2) γ(p)
α(p2)

p−p1

p2−p1

p2

=

p2−p
p2−p1

p1 + p−p1

p2−p1
p2

p2−p
p2−p1

+ p−p1

p2−p1

= p

�

C.3.2. Standard proof of Proposition 1. The responsiveness and directness, as men-

tioned in texts and which will be further elaborated in later texts, implies that second

round information disclosure will always be full information disclosure while the first

round information disclosure involves at most three messages, one message for each

action (including action a1, a2 and acquiring information). Furthermore, since both the

expert and the agent share the same preference in choice-making, the agent should form

a belief 0 upon receiving message at which he chooses action a1. Similarly, he forms a

posterior f(p0) upon receiving message at which he chooses action a2. Let me denote the

belief formed by the agent who receives the message and decides to acquire information

for another period as pF . Besides, let me denote the belief martingale induced by the

first round information disclosure as γ = (γ(0), γ(pF ), γ(f(p0))).

In the first step, we are going to show that it is without loss of optimality to restrict

pF = q∗. To prove this argument, for any belief martingale γ which can be induced by

some disclosure policy, we construct another belief martingale γ′ such that supp(γ′) ⊆

{0, q∗, f(p0)}. We then divide our proofs into three steps. First, we will show that the

belief martingale γ′ can be induced by some perturbed disclosure policy. Second, we

show that the disclosure policy can motivate the agent to acquire information in the first

period of the game. Finally, the expert weakly prefers belief martingale γ′ to γ. Incentive

compatibility implies that pF ≤ q∗. Let me consider a perturbed first round information

disclosure policy with induced belief martingale γ′ such that supp(γ′) ⊆ {0, q∗, f(p0)} and
γ′(0) = γ(0) + γ(pF )

(
1− pF

q∗

)
γ′(q∗) = γ(pF )p

F

q∗

γ′(f(p0)) = γ(f(p0))

.
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We argue that the belief martingale γ′ can be induced by some perturbed disclosure

policy. First, we have the following equation

γ′(0) + γ′(q∗) + γ′(f(p0)) = γ(0) + γ(pF )

(
1− pF

q∗

)
+ γ(pF )

pF

q∗
+ γ(f(p0))

= γ(0) + γ(pF ) + γ(f(p0)) = 1

Second, we also have Bayesian plausibility constraint as follows

γ′(0) · 0 + γ′(q∗) · q∗ + γ′(f(p0)) · f(p0) =

[
γ(0) + γ(pF )

(
1− pF

q∗

)]
· 0 + γ(pF )

pF

q∗
· q∗ + γ(f(p0)) · f(p0)

= γ(0) · 0 + γ(pF ) · pF + γ(f(p0)) · f(p0) = p0

Therefore, Lemma 8 implies that the belief martingale γ′ can be induced by some disclo-

sure policy. For any belief martingale γ, let me denote the expert’s and agent’s payoff as

V (γ) and W (γ) respectively. Let me denote V F (W F ) and V N (WN ) the expert’s (agent’s)

payoff under full and no information disclosure, respectively. Next, we argue that the

belief martingale γ′ is plausible in the sense that W (γ′) > WN . This is due to the follow-

ing,

W (γ′) =

(
1− γ′(q∗)q∗

p0

)
WF +

γ′(q∗)q∗

p0


− c

1 + δ + δ2
+

δ + δ2

1 + δ + δ2

(
1− p0

q∗

)
m(0)

+
δ + δ2

1 + δ + δ2

p0

q∗

[
− 1

1 + δ
c+

δ

1 + δ

(
q∗

f (2)(p0)
m(f (2)(p0)) +

(
1− q∗

f (2)(p0)

)
m(0)

)]


=WF − γ′(q∗)q∗

p0


δ + δ2

1 + δ + δ2

p0

f(p0)

[
m(f(p0))−

(
− c

1 + δ
+

δ

1 + δ

[
f(p0)

f (2)(p0)
m(f (2)(p0)) +

(
1− f(p0)

f (2)(p0)

)
m(0)

])]
+

δ

1 + δ + δ2

(
p0

q∗
− p0

f(p0)

)
(c+m(0))



=WF − γ(pF )pF

p0


δ + δ2

1 + δ + δ2

p0

f(p0)

[
m(f(p0))−

(
− c

1 + δ
+

δ

1 + δ

[
f(p0)

f (2)(p0)
m(f (2)(p0)) +

(
1− f(p0)

f (2)(p0)

)
m(0)

])]
+

δ

1 + δ + δ2

(
p0

q∗
− p0

f(p0)

)
(c+m(0))



>WF − γ(pF )pF

p0


δ + δ2

1 + δ + δ2

p0

f(p0)

[
m(f(p0))−

(
− c

1 + δ
+

δ

1 + δ

[
f(p0)

f (2)(p0)
m(f (2)(p0)) +

(
1− f(p0)

f (2)(p0)

)
m(0)

])]
+

δ

1 + δ + δ2

(
p0

pF
− p0

f(p0)

)
(c+m(0))


=W (γ) >WN

Finally, we show that such perturbation in information disclosure weakly benefits the

expert since we have the following
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V (γ′) =

[
1− γ′(q∗)q

∗

p0

]
V F + γ′(q∗)

q∗

p0

{
δ + δ2

1 + δ + δ2

(
1− p0

q∗

)
m(0) +

δ2

1 + δ + δ2

p0

q∗

[
q∗

f (2)(p0)
m(f (2)(p0)) +

(
1− q∗

f (2)(p0)

)
m(0)

]}

= V F + γ′(q∗)
q∗

p0


δ2

1 + δ + δ2

p0

f(p0)

[
f(p0)

f (2)(p0)
m(f (2)(p0)) +

(
1− f(p0)

f (2)(p0)

)
m(0)−m(f(p0))

]
− δ

1 + δ + δ2

p0

f(p0)
m(f(p0))

− δ

1 + δ + δ2

(
p0

q∗
− p0

f(p0)

)
m(0)



= V F + γ(pF )
pF

p0


δ2

1 + δ + δ2

p0

f(p0)

[
f(p0)

f (2)(p0)
m(f (2)(p0)) +

(
1− f(p0)

f (2)(p0)

)
m(0)−m(f(p0))

]
− δ

1 + δ + δ2

p0

f(p0)
m(f(p0))

− δ

1 + δ + δ2

(
p0

q∗
− p0

f(p0)

)
m(0)



> V F + γ(pF )
pF

p0


δ2

1 + δ + δ2

p0

f(p0)

[
f(p0)

f (2)(p0)
m(f (2)(p0)) +

(
1− f(p0)

f (2)(p0)

)
m(0)−m(f(p0))

]
− δ

1 + δ + δ2

p0

f(p0)
m(f(p0))

− δ

1 + δ + δ2

(
p0

pF
− p0

f(p0)

)
m(0)


= V (γ)

Any belief martingale γ with support {0, q∗, f(p0)} can be implemented by a convex com-

bination of policy τ I and full information disclosure policy. Since Bayesian plausibility

implies that

γ(0)0 + γ(q∗)q∗ + γ(f(p0))f(p0) = p0

=⇒ γ(q∗)
p0

q∗
+
γ(f(p0))

p0

f(p0)

= 1,

any policy with martingale γ can be implemented by τ I with probability γ(q∗)
p0
q∗

, and full

information disclosure policy with probability γ(f(p0))
p0

f(p0)

.

Denote V H andWH as the expert’s and agent’s payoff under disclosure policy τ I . Once we

have restricted to the set of belief martingales γ with support {0, q∗, f(p0)}, the expert’s

payoff V (γ) (the agent’s payoff W (γ)) is a convex combination of V H (WH) and V F (W F ).

Then the optimal disclosure policy can be pinned down as a solution to the following

optimization problem,

max
α∈[0,1]

αV H + (1− α)V F

s.t. αWH + (1− α)W F ≥ WN(Plausibility) (16)

Therefore if V F ≥ V H , then it is optimal for the expert to fully disclose information.

Otherwise, the expert prefers to maximize the weight on V H or, in other words, maxi-

mize the weight of belief martingale on q∗ subject to the constraint that the agent will

be motivated to acquire information in the first period. In later case, the optimal policy,

the optimal combination of τ I and full information disclosure, is exactly the policy τU .
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C.4. Derivation of margin belief process. If dqt = qt(ρqt + c)dt, then we have that

dqt
q(ρqt + c)

= dt⇒ dqt
qt
− ρ

ρqt + c
dqt = cdt

⇒ d(ln qt − ln(ρqt + c)) = dct⇒ d ln
qt

ρqt + c
= dct

⇒ ln
qt

ρqt + c
− ln

q0

ρq0 + c
= ct⇒ qt

ρqt + c
= e

ln
q0

ρq0+c
+ct

=
q0

ρq0 + c
ect

⇒ qt = ρ
q0

ρq0 + c
ectqt + c

q0

ρq0 + c
ect ⇒ qt =

c q0
ρq0+c

ect

1− ρ q0
ρq0+c

ect
=

cq0e
ct

ρq0(1− ect) + c

C.5. Proof of Lemma 2. First, let me introduce some denotations. Denote a one-step-

ahead process, which passes pt̂ at time t̂, as Qt̂ with a typical element at time t as qt̂t.
13

Moreover, for any t̂ ≤ T (qP ,P), define a function γ(t; t̂) by

γ(t; t̂) := qt̂t − pt, ∀t ∈ [0, T (1;Qt̂)].

First, γ(t; t̂) is strictly convex in t since

d2γ(t;t̂)
dt2

=
d dq

t̂

dt

dt
− d

dpt
dt

dt
=

d[qt̂t(ρq
t̂
t+c)]

dt
− d[λpt(1−pt)]

dt
= (c+ 2ρqt̂t)

dqt̂t
dt

+ λ(2pt − 1)dpt
dt

= qt̂t(c+ 2ρqt̂t)(ρq
t̂
t + c) + λ2pt(1− pt)(2pt − 1) > 0.

Second, I will show that dγ(t;t̂)
dt

∣∣∣
t=t̂
≤ 0, where equality holds if and only if t̂ = T (qP ,P).

The argument follows from the following

dγ(t; t̂)

dt

∣∣∣∣
t=t̂

=
dqt̂t
dt

∣∣∣∣∣
t=t̂

− dpt
dt

∣∣∣∣
t=t̂

= qt̂t̂(ρq
t̂
t̂ + c)− λpt̂(1− pt̂) = pt̂(ρpt̂ + c)− λpt̂(1− pt̂) ≤ 0,

where the inequality holds if and only if pt̂ = qP . Third, since γ(t̂; t̂) = 0 and dγ(t;t̂)
dt

∣∣∣
t=t̂
≤ 0,

where equality holds if and only if t̂ = T (qP ,P), the equation γ(t; t̂) = 0 has exactly

two solutions for any t̂ < T (qP ,P) while it has a single solution if t̂ = T (qP ,P). The

first argument and the argument that θ(T (qP ,P)) naturally follows. Finally, for any

t̂ < t̂′ ≤ T (qP ,P), one then have that dγ(t;t̂′)
dt

∣∣∣
t=t̂

< dγ(t;t̂′)
dt

∣∣∣
t=t̂′
≤ 0, which then implies that

γ(t̂, t̂′) > 0 or qt̂′
t̂
> pt̂ = qt̂

t̂
. Therefore, we further have that qt̂′t > qt̂t and γ(t; t̂′) > γ(t; t̂) for

any t ≤ T (1;Qt̂′). The argument that θ(t̂) is strictly decreasing in t̂ then follows.

13Please note that the process Q(t̂) is a lower envelope of process P and Qt̂;
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C.6. Proof of Corollary 1. In the first step, we derive the derivative of hitting time

θ(t̂). By the definition of hitting time function θ(t̂), the following equation holds

pt̂ +

∫ θ(t̂)

t̂

dpt̂
dt
dt = pt̂ +

∫ θ(t̂)

t̂

dqt̂t
dt
dt⇔

∫ θ(t̂)

t̂

[
λpt(1− pt)− qt̂t(ρqt̂t + c)

]
dt = 0 (17)

Lemma 2 implies that one can take Implicit function theorem to derive θ′(t̂). Specifically,

by taking derivative of both sides of Equation above with respect to t̂, one then have that[
λpθ(t̂)(1− pθ(t̂))− qt̂θ(t̂)(ρq

t̂
θ(t̂) + c)

]
θ′(t̂)−

[
λpt̂(1− pt̂)− qt̂t̂(ρq

t̂
t̂ + c)

]
= 0.

Furthermore, one can then derive θ′(t) as

θ′(t̂) =
λpt̂(1− pt̂)− qt̂t̂(ρq

t̂
t̂
+ c)

λpθ(t̂)(1− pθ(t̂))− qt̂θ(t̂)(ρq
t̂
θ(t̂)

+ c)
=

pt̂ [λ− c− (λ+ ρ)pt̂]

−pθ(t̂)
[
(λ+ ρ)pθ(t̂) − (λ− c)

] = − pt̂(q
P − pt̂)

pθ(t̂)(pθ(t̂) − qP )
(18)

In the second step, we derive the partial derivative of term p0

qt(t̂)
with respect to t̂, for any

t ∈ (t̂, θ(t̂)). At first, one can represent p0

qt(t̂)
as follows

p0

qt(t̂)
= p0

cp
t̂
ec(t−t̂)

ρp
t̂
(1−ec(t−t̂))+c

= p0

c
p0e

λt̂

p0e
λt̂+1−p0

ec(t−t̂)

ρ
p0e

λt̂

p0e
λt̂+1−p0

(1−ec(t−t̂))+c

=
p0

[
ρ

p0e
λt̂

p0e
λt̂+1−p0

(1−ec(t−t̂))+c
]

c
p0e

λt̂

p0e
λt̂+1−p0

ec(t−t̂)
= e−c(t−t̂)

[
ρ+c
c
p0 + (1− p0)e−λt̂

]
− ρp0

c
.

Therefore, one can further derive the partial derivative of term p0

qt(t̂)
with respect to t̂ as

∂
p0
qt(t̂)

∂t̂
= (ρ+ c)p0e

−cte−ct̂ − (1− p0)e−ct(λ− c)e−(λ−c)t̂

= p0(λ− c)e−c(t−t̂)
[
ρ+c
λ−c −

1−p0

p0
e−λt̂

]
= p0(λ− c)e−c(t−t̂)

[
1−qP
qP
− 1−pt̂

pt̂

] (19)

Specifically, one can represent the expert’s payoff upon the reporting policy, specified in

Theorem 1 but with transition time t̂, as

W (t̂) = m(0)

∫ θ(t̂)

0

e−ρt
p0

qt(t̂)

dqt(t̂)

qt(t̂)dt
dt+ e−ρθ(t̂)

p0

pθ(t̂)
m(pθ(t̂)) (20)

= ρm(0)

∫ ∞
0

e−ρt

(
1− p0

min
{
qt(t̂), pθ(t̂)

}) dt+ e−ρθ(t̂)
p0

pθ(t̂)
m(pθ(t̂)) (21)

By the definition of reporting process Q(t̂), the agent is indifferent between making
decision at any moment during in time interval [t̂, θ(t̂)], which therefore implies that∫ θ(t̂)

t̂

e−ρt
p0

qt(t̂)

dqt(t̂)

qt(t̂)dt
dt+ e−ρθ(t̂)

p0
pθ(t̂)

m(pθ(t̂))︸ ︷︷ ︸
Discounted payoff if making decision at θ(t̂)

− c

∫ θ(t̂)

t̂

e−ρt
p0

qt(t̂)
dt︸ ︷︷ ︸

Discounted research cost if funding until θt̂)

= e−ρt̂
p0
pt̂
m(pt̂)︸ ︷︷ ︸

Discounted payoff if making decision at t̂

.
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Please note that the agent only funds the expert if he has not received a message

confirming the state being ω1 and the probability of the event at time t is given by p0

qt(t̂)
.

Introduce the equation above into (20), one can derive another form of the expert’s payoff

as

W (t̂) = m(0)

∫ t̂

0

e−ρt
p0

pt

dpt
ptdt

dt+ e−ρt̂
p0

pt̂
m(pt̂)︸ ︷︷ ︸

Discounted payoff of early making decision at t̂

+ c

∫ θ(t̂)

t̂

e−ρt
p0

qt(t̂)
dt︸ ︷︷ ︸

Research grant occupation

(22)

Thirdly, by Equation (22), let me take a derivative of W (t̂) with respect to t̂ as

W ′(t̂) = e−ρt̂ p0
(pt̂)

2
dpt
dt

∣∣∣
t=t̂
− ρp0e−ρt̂ + c

[
e−ρθ(t̂) p0

qθ(t̂)(t̂)
θ′(t̂)− e−ρt̂ p0

qt̂(t̂)

]
+ c

∫ θ(t̂)
t̂

e−ρt
∂
p0
qt(t̂)

∂t̂
dt

= e−ρt̂ p0
(pt̂)

2 λpt̂(1− pt̂)− ρp0e−ρt̂ + c

[
−e−ρθ(t̂) p0

pθ(t̂)

pt̂(q
P−pt̂)

pθ(t̂)(pθ(t̂)−qP )
− e−ρt̂ p0

pt̂

]
+ c

∫ θ(t̂)
t̂

e−ρtp0(λ− c)e−c(t−t̂)
[

1−qP
qP

− 1−pt̂
pt̂

]
dt

= e−ρt̂ p0
pt̂
λ(1− pt̂)− ρp0e−ρt̂ − ce−ρt̂ p0pt̂

− ce−ρθ(t̂) p0
pθ(t̂)

pt̂(q
P−pt̂)

pθ(t̂)(pθ(t̂)−qP )
+ cp0(λ− c)ect̂

(
1−qP
qP

− 1−pt̂
pt̂

) ∫ θ(t̂)
t̂

e−(ρ+c)tdt

= e−ρt̂ p0
pt̂

[
λ(1− pt̂)− ρpt̂ − c

]
− e−ρθ(t̂) p0

pt̂
c

(
pt̂
pθ(t̂)

)2
qP−pt̂
pθ(t̂)−qP

+ p0
pt̂
cect̂

[
(λ− c) 1−qP

qP
pt̂ − (λ− c)(1− pt̂)

]
e−(ρ+c)t̂−e−(ρ+c)θ(t̂)

ρ+c

= e−ρt̂ p0
pt̂

[
(λ− c)− (λ+ ρ)pt̂

]
− e−ρt̂ p0

pt̂
(λ+ ρ)(qP − pt̂)

(
pt̂
pθ(t̂)

)2
ce−ρ(θ(t̂)−t̂)

(λ+ρ)(pθ(t̂)−qP )
− e−ρt̂ p0

pt̂

[
(λ− c)− (λ+ ρ)pt̂

]
c
ρ+c

(1− e−(ρ+c)(θ(t̂)−t̂))

= e−ρt̂ p0
pt̂

(λ+ ρ)(qP − pt̂)
{

ρ
ρ+c
− ce−(ρ+c)(θ(t̂)−t̂)

[(
pt̂
pθ(t̂)

)2
ec(θ(t̂)−t̂)

(ρ+λ)(pθ(t̂)−qP )
− 1
ρ+c

]}

The second equality above follows from the introduction of Equation (18) and (19).

Finally, I will characterize t∗ and show its uniqueness. At first, I will show that the term(
pt̂
pθ(t̂)

)2
ec(θ(t̂)−t̂)

(ρ+λ)(pθ(t̂)−qP )
is increasing in t̂. One can rewrite the term as

(
pt̂
pθ(t̂)

)2
ec(θ(t̂)−t̂)

(ρ+ λ)(pθ(t̂) − qP )
=

pt̂
pθ(t̂)

pt̂
cpt̂e

c(θ(t̂)−t̂)

ρpt̂[1−ec(θ(t̂)−t̂)]+c

ec(θ(t̂)−t̂)

(ρ+ λ)(pθ(t̂) − qP )
=

pt̂
pθ(t̂)

ρpt̂[1− ec(θ(t̂)−t̂)] + c

c(ρ+ λ)(pθ(t̂) − qP )
.

Since θ(t̂) is decreasing in t̂ from Lemma 2, one then have that all the terms pt̂
pθ(t̂)

,

ρpt̂[1− ec(θ(t̂)−t̂)] + c and 1
c(ρ+λ)(pθ(t̂)−qP )

are increasing in t̂, so is
(

pt̂
pθ(t̂)

)2
ec(θ(t̂)−t̂)

(ρ+λ)(pθ(t̂)−qP )
. Sec-

ondly, if the following holds,(
pt̂
pθ(t̂)

)2
ec(θ(t̂)−t̂)

(ρ+ λ)(pθ(t̂) − qP )
≤ 1

ρ+ c
,

then W ′(t̂) > 0. Moreover since

lim
t̂→T (qP ,P)

(
pt̂
pθ(t̂)

)2
ec(θ(t̂)−t̂)

(ρ+ λ)(pθ(t̂) − qP )
=∞,

and the continuity of W (·), there exists some t̂1 such that(
pt̂1
pθ(t̂1)

)2
ec(θ(t̂1)−t̂1)

(ρ+ λ)(pθ(t̂1) − qP )
>

1

ρ+ c
.
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We therefore focus on the time interval (t̂1, T (qP ,P)]. Otherwise, we focus on the time in-

terval [0, T (qP ,P)]. Finally, in this time interval, the term ce−(ρ+c)(θ(t̂)−t̂)
[(

pt̂
pθ(t̂)

)2
ec(θ(t̂)−t̂)

(ρ+λ)(pθ(t̂)−qP )
− 1

ρ+c

]
is always increasing in t̂. Accordingly, there exists a unique t∗ to maximize W (·). More-

over, if W ′(0) ≤ 0, then t∗ = 0; Otherwise, t∗ is a solution to the equation

ρ

ρ+ c
= ce−(ρ+c)(θ(t̂)−t̂)

( pt̂
pθ(t̂)

)2
ec(θ(t̂)−t̂)

(ρ+ λ)(pθ(t̂) − qP )
− 1

ρ+ c

.

C.7. Proof of Corollary 2. One can further simplify the aggregate information value

s(t; t∗) as

s(t; t∗) =
p0

qt(t∗)
− p0

pt
.

For any t ∈ [0, t∗] ∪ [θ(t∗),∞), since qt(t∗) = pt, then s(t, t∗) ≡ 0. For any t ∈ (t∗, θ(t∗)),

qt(t
∗) = qt

∗
t . Then let me take first order derivative of s(t; t∗) with respect to t as follows

ds(t;t∗)
dt

= − p0

(qt
∗
t )

2

dqt
∗
t

dt
+ p0

p2
t

dpt
dt

= p0

p2
t
λpt(1− pt)− p0

(qt
∗
t )

2 qt
∗
t (ρqt

∗
t + c) = λ

pt
− c

qt
∗
t
− (λ+ ρ)

= λ
pt∗e

λ(t−t∗)

pt∗e
λ(t−t∗)+(1−pt∗ )

− c
cpt∗e

c(t−t∗)

ρpt∗ [1−ec(t−t
∗)]+c

− (λ+ ρ) = ρpt∗+c
pt∗

e−λ(t−t∗)
[
λ(1−pt∗ )
ρpt∗+c

− e(λ−c)(t−t∗)
]

As a result, the turning point tS is given by

t̃1 = t∗ +
1

λ− c
ln
λ(1− pt∗)
ρpt∗ + c

.

Moreover, for any t < tS, s(t; t∗) is increasing in t and vice versa. Finally, As we have

shown in Lemma 2, θ(t̂) ≥ T (qP ,P) with equality holding if and only if t̂ = T (qP ,P).

Therefore, we have that pθ(t∗) = qθ(t∗)(t
∗) = qt

∗

θ(t∗) ≥ qP . One then have that

ds(t; t∗)

dt

∣∣∣∣
t=θ(t∗)

=
λ

pθ(t∗)
− c

qt
∗
θ(t∗)

− (λ+ ρ) =
λ− c
pθ(t∗)

− (λ+ ρ) ≤ λ− c
qP
− (λ+ ρ) = 0,

which therefore implies that θ(t∗) ≥ tS, with equality holding if and only if t∗ = T (qP ,P).

C.8. Proof of Corollary 3. One can easily verify the reporting strategy of truthfully

report with delay D(t; t∗) exactly induces a belief martingale which either jumps to belief

0 or moves along the reporting process Q(t∗) with transition time t∗. Besides, upon not

receiving a single message confirming the state being ω1, the agent will not cut funding

until the hitting time θ(t∗). Therefore, the expert, under this reporting strategy, derives

what she can derive under optimal disclosure policy.
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Moreover, for any t ∈ (t∗, θ(t∗)), let me take derivative of both sides of Equation (7) with

respect to t as

dpt−D(t;t∗)
dt

= dqt(t∗)
dt
⇒ dpt′

dt′

∣∣∣
t′=t−D(t;t∗)

(1− dD(t;t∗)
dt

) =
dqt
∗
t

dt

⇒ dD(t;t∗)
dt

= 1−
dqt
∗
t
dt

dpt′
dt′

∣∣∣
t′=t−D(t;t∗)

= 1− qt
∗
t (ρqt

∗
t +c)

λpt−D(t;t∗)(1−pt−D(t;t∗))
= 1− qt

∗
t (ρqt

∗
t +c)

λqt
∗
t (1−qt∗t )

= λ+ρ

λ(1−qt∗t )
(qP − qt∗t )

As we have shown that θ(t∗) ≥ T (qP ,P) in Lemma 2, one then have that t∗ ≤ T (qP ,Q(t∗)) ≤

θ(t∗). Therefore, the turning point tD is given by T (qP ,Q(t∗)). Besides, dD(t;t∗)
dt

> 0 for any

t ∈ (t∗, tD) while dD(t;t∗)
dt

< 0 for any t ∈ (tD, θ(t∗)).

C.9. Proof of Theorem 1. Our proof covers the case where p0 ≥ 1
2
. However, it can be

easily generated to the case where p0 ∈ [p
0
, 1

2
) by replacing time 0 with time t(p0).

C.9.1. Stopping belief distribution and its Bayesian plausibility. In the first step, we

argue that with probability 1, the agent will finally stop research funding and make

decision, given any dynamic disclosure policy.

We prove Lemma 3 by proving Lemma 9, 10 and 11.

Lemma 9. For any dynamic disclosure policy (π,M), the agent will stop research funding

and make decision with probability 1.

Proof. Suppose with some probability α > 0, the agent chooses to keep funding forever.

Let me define

αt := Pr(the agent continues funding research at time t).

By definition, αt is monotonically decreasing and therefore converges to α. As a result,

for any ε, there exists some T > 0 such that αt − α < ε, for any t > T . Therefore at any

time t > T , the agent’s continuation payoff is bounded above by

− α
αt

∫ ∞
0

e−ρtcdt+
αt − α
αt

maxpm(p) ≤ − α

α + ε

∫ ∞
0

e−ρtcdt+
ε

α

By making ε extremely small, the terms above is below zero, which leads to contradic-

tion, as the agent can at least secure payoff m(pt) ≥ 1
2

if stopping research funding and

making decision right away. �

For any dynamic disclosure policy (π,M), denote τ
(π,M)
t (p) as the probability that the

agent chooses to stop funding and make decision exactly at time t and if he believes that

the state ω2 is with probability p. Then, denote τ (π,M)(p) :=
∫∞
t=0

τ
(π,M)
t dt as the aggregate
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(across time) probability that the agent chooses to stop funding and make decision given

his belief being p. Lemma 9 then implies that τ (π,M) is a probability distribution over

∆{ω1, ω2}. We therefore name such τ (π,M) as stopping belief distribution induced

by dynamic disclosure policy (π,M). Moreover, if the agent chooses to stop research

funding and make decision, when he believes that the state is ω2 with probability p,

the his belief will stay at p since then. This is due to the fact that there will be no

information acquisition since then and belief will no longer be updated. In this sense, it

is similar to static Bayesian persuasion (c.f. Kamenica and Gentzkow [2011]) which only

involves one step information disclosure. As a result, we have Bayesian plausibility

constraint, ∫ 1

0

pτ (π,M)(p)dp = p0, ∀(π,M).

Finally, whenever there is no confusion, let me simplify τ (π,M) as τπ.

Example 1. In the three period model introduced in section 3, let us consider the uncer-

tainty increase dynamic disclosure policy. Under this dynamic disclosure policy, the be-

lief martingale, starting from prior p0, jumps to belief 0 with probability p0

p
, to belief with

probability f(p0) with probability p0

p

p−q∗

f(p0)−q∗ and to belief q∗ with probability p0

p

f(p0)−p
f(p0)−q∗ .

Only if the first two beliefs are reached does the agent choose to stop funding and make

decision immediately, which implies that τ1(0) = p0

p
and τ1(f(p0)) = p0

p

p−q∗

f(p0)−q∗ ; Otherwise,

the agent chooses to fund for another period and the belief martingale, resuming at be-

lief q∗, jumps to belief 0 with probability f (2)(p0)−q∗
q∗

and to belief f (2)(p0) with probability
q∗

f (2)(p0)
. Then, τ2(0) = p0

p

f(p0)−p
f(p0)−q∗

f (2)(p0)−q∗
q∗

and τ2(f (2)(p0)) = p0

p

f(p0)−p
f(p0)−q∗

q∗

f (2)(p0)
. One can then

derive that



τ(0) = τ1(0) + τ2(0) = p0

p
+ p0

p

f(p0)−p
f(p0)−q∗

f (2)(p0)−q∗
q∗

τ(f(p0)) = τ1(f(p0)) = p0

p

p−q∗

f(p0)−q∗

τ(f (2)(p0)) = τ2(f (2)(p0)) = p0

p

f(p0)−p
f(p0)−q∗

q∗

f (2)(p0)

τ(p) = 0, otherwise

.

One can then show that


∫ 1

0
τ(p)dp = τ(0) + τ(f(p0)) + τ(f (2)(p0)) = 1∫ 1

0
τ(p)pdp = τ(0)0 + τ(f(p0))f(p0) + τ(f (2)(p0))f (2)(p0) = p0

.

C.9.2. Responsiveness. Let me focus on a subclass of dynamic disclosure policy under

which the expert has reported all her privately observed research progress whenever

the agent chooses to stop research funding. We define such property as follows
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Definition 3. A dynamic disclosure policy is responsive if the agent chooses to stop

research funding and make decision right away only when his belief is consistent with

the expert’s.

Lemma 10. It is without loss of optimality to focus on the set of responsive dynamic

disclosure policy.

Proof. Suppose that the expert’s belief at some time is given by q. Moreover upon re-

ceiving some message, the agent forms a posterior p < q and chooses to stop research

funding and make decision right away. Then he believes that his continuation payoff

will be weakly lower than m(p) if he continues to fund research and put off decision

making. Then let me consider a perturbed version of dynamic disclosure policy,

(1) The expert replaces the message, which leads that the agent quit research fund-

ing and making decision right away while forming posterior p, by revealing whether

the state is of ω1 (and therefore forms a posterior 0) or the state is ω2 with proba-

bility q; Furthermore, if the message which means that the state is ω2 is realized,

the expert commits to conceal all the information in the future if she gets funded.

(2) keeping all else the same.

If the agent receives the message which means that the state is exactly ω1, then he

will make decision, by choosing policy a1, right away. Otherwise if the agent receives

the message which means that the state is ω2 with probability q ≥ p0 ≥ 1
2
, then he will

also make decision, by choosing policy a2, right away since he knows that there will be no

information disclosure in the future even if he chooses to fund expert to conduct research

in the future. As a result, his expected payoff is given by p
q
m(q)+(1− p

q
)m(0) ≥ m(p). Put

it in other words, the perturbed version of dynamic disclosure policy, compared to the

original one, improves social welfare through increasing the accuracy of agent’s choice

between candidate policy without delay. Moreover, such perturbation also induces the

agent to be more willing to fund research and delay decision making in previous periods

as it weakly increases the continuation payoff for the agent. Put it in other words, such

perturbation relaxes the incentive compatibility constraints in previous periods. Let me

define such dynamic disclosure policy as responsive dynamic disclosure policy. �

The definition of responsive dynamic disclosure policy (π,M) implies that the support

of its stopping belief distribution τπ should be either 0 or weakly above p0. Or mathe-

matically we have that

supp(τπ) ⊆ {0} ∪ [p0, 1] .
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Our next step argues that one can even further restrict its support to {0} ∪ [qP , qR] when

looking for optimal dynamic disclosure policy.

Lemma 11. It is without loss of optimality to further focus on a subset of responsive

dynamic disclosure policies with stopping belief distribution τ , whose support lies in

{0} ∪ [qP , qR].

Proof. Let us consider a responsive dynamic disclosure policy (π,M) with
∫
p∈(qR,1]

τπ(p)dp >

0, then the probability that the agent keeps research funding at T (qR,P) is strictly pos-

itive. Let us consider a perturbation (π′,M ′) of the original dynamic disclosure policy,

(1) For any history node such that the the agent keeps funding research prior to and

at T (qR,P), the expert replaces the message sent at the end of T (qR,P) by reveal-

ing all what she has previously learnt at T (qR,P), inducing a belief martingale,

resuming from some belief p ∈ (0, qR), jumping either to belief 0 or belief qR in-

stantly. Furthermore, she commits to disclose all what she has newly learnt in

time if she is funded to conduct information acquisition further;

(2) Keeping all else the same.

Contingent on the event that the agent keeps funding research prior to and at T (qR,P),

suppose that the agent blindly follows the expert’s recommendations since then. Lemma

1 implies that the expert will recommends that the agent stop funding and make deci-

sion right away. We then argue that this recommendation is incentive compatible (when

the agent behaves strategically), since the preference of the agent is perfectly aligned

with the one of the expert except that the former has to bear the research cost. Finally,

the agent’s continuation payoff upon history nodes where the research has been funded

prior to and at T (qR,P) reaches maximum as the expert conducts full information dis-

closure since then. Therefore, the agent still keeps funding research along these history

nodes under the perturbed responsive dynamic disclosure policy (π′,M ′). Accordingly,

such perturbation strictly improves the expert’s payoff and restricts the support of π′ to

{0} ∪ [p0, q
R]. Similarly, one can show that

∫
p∈[p0,pP )

τ(p)dp = 0 at optimum. �

C.9.3. Directness and revelation principle. Let us consider a a sub-class responsive dy-

namic disclosure policies (π,M) such that the message space M := {F, S1, S2}, where F

means keeping research funding and S1 (S2) means stoping funding and choosing policy

a1 (a2). We name such property as directness.

Definition 4. A responsive dynamic disclosure policy is direct if at any time t, there

exists at most one message upon which the agent chooses to continue to fund research.
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In the forth step, we show that revelation principle holds in our context14, i.e., restric-

tion on the class of direct and responsive dynamic disclosure policies is without loss of

generality.

Lemma 12. It is without loss of generality to focus on the class of direct and responsive

dynamic disclosure policies.

Proof. Given any dynamic disclosure policy (π,M), let me write λ(π,M)(t) as the accumu-

lating probability that the agent believes that the state is ω1 up to date t. Whenever

there is no confusion, let me simplify it at λπ(t). Please that λ(t) is monotonically in-

creasing and converges to τ(0). Let me name it as weight accumulation speed at

posterior 0. At first, different responsive dynamic disclosure policies end up with the

same payoff to both the expert and agent if they have the same weight accumulation

speed λ and stopping posterior distribution τ . Specifically, given (λ, τ), the expert’s pay-

off is given by

V (λ, τ) = ρ

∫ ∞
0

e−ρtλ(t)m(0)dt+

∫
p∈[qP ,qR]

e−ρT (p,P )τ(p)m(p)dp,

and the agent’s payoff is given by

U(λ, τ) = V (λ, τ)− c
∫ ∞

0

e−ρt
[
1− λ(t)−

∫
p∈[qP ,pt]

τ(p)dp

]
dt.

Secondly, for any responsive dynamic disclosure policy π with weight accumulation

speed and stopping posterior distribution (λπ, τπ), consider the following direct disclo-

sure policy. At t < T (qP ,P), the expert sends two messages, one is choosing policy a1, and

the other is keep funding research. The accumulating probability that the first message

is sent is given by λπ(t) while the instant probability that the second message is sent is

given by 1−λπ(t). Upon receiving the second message, the agent forms a posterior p0

1−λπ(t)
.

At t ∈ [T (qP ,P), T (qR,P)], the expert sends three messages, the first one is choosing pol-

icy a1, the second one is keeping funding research and the third one is choosing policy a2.

The accumulating probability that the first message is sent is given by λπ(t); The instant

probability that the second message is sent is given by 1−λπ(t)−
∫
p∈[qP ,pt]

τπ(p)dp; Finally

the accumulating probability that the third message is sent is given by
∫
p∈[qP ,pt]

τπ(p)dp.

Whenever it is with strictly positive probability that the second message is sent, the
14Revelation principle in dynamic information design was introduced by Myerson [1986] and it has been
recently discussed by Doval and Ely [2018], Sugaya and Wolitzky [2019] and Makris and Renou [2018].
We show that revelation principle still holds in our setting, which is a stopping game with both continuous
time and state at each period evolving based on actions taken by the agent.
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agent forms a posterior

p̂t(λ, τ) =
p0 −

∫
p∈[qP ,pt]

τπ(p)pdp

1− λπ(t)−
∫
p∈[qP ,pt]

τπ(p)dp
(23)

Please note that if t ∈ [0, T (qP ,P)), then pt < qP and the interval [qP , pt] is an empty set.

Further it implies that ∫
p∈[qP ,pt]

τπ(p)pdp =

∫
p∈[qP ,pt]

τπ(p)dp = 0.

Therefore Equation (23) is a unified formulation for the posterior, at which the agent

continues to fund research. Besides the continuation payoff Vt(λ, τ) to the expert, if the

agent receives the second message at time t, is given by

Vt(λ, τ) =
ρ
∫∞
t e−ρ(t′−t)[λ(t′)− λ(t)]m(0)dt′ +

∫
p∈(pt,qR] e

−ρ[T (p,P )−t]τ(p)m(p)dp

1− λ(t)−
∫
p∈[qP ,pt]

τ(p)dp
(24)

while the continuation payoff Ut(λ, τ) to the agent is given by

Ut(λ, τ) = Vt(λ, τ)−

∫∞
t e−ρ(t′−t)[1− λ(t′)−

∫
p∈[qP ,pt′ ]

τ(p)dp]dt′

1− λ(t)−
∫
p∈[qP ,pt]

τ(p)dp
c (25)

We then argue that the direct dynamic disclosure policy is incentive compatible. By

construction, the direct disclosure policy πD has weight accumulating speed at posterior

0 as λπ and stopping posterior distribution τπ. Based on our previous argument, the

direct dynamic disclosure policy πD has the same payoff as the original dynamic disclo-

sure policy π. Moreover at any t, qt is a garbling of all posteriors implied by messages,

upon which the agent continues to fund research at time t in the original disclosure pol-

icy. As a result, the agent will still continue to fund research at the garbling of beliefs

implied by these messages, which therefore implies the incentive compatibility of the

direct disclosure policy. �

C.9.4. Fastest weight accumulation speed λ. In the fifth step, we are going to study

the fastest weight accumulation speed, given some fixed stopping belief distribution

τπ, among all direct and responsive dynamic disclosure policies (π,M). Basically, for

any stopping belief distribution τ such that Bayesian plausibility constraint holds, we

construct an induced belief martingale and show that the underlying weight accumu-

lating speed λ reaches its maximum. Furthermore, construction of the induced belief

martingale is divided into two parts, before and after time T (qP ;P), and conducted in

flashback.
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At first, let me assume that qT (qR,P)(0) ≤ qR. Lemma 2 then implies that for any belief

p ∈ [qP , qR], there exists some transition time ϕ(p) such that

θ(ϕ(p)) = T (p;P).

To simplify notation, let me define belief η(p) := qT (qP ;P)(ϕ(p)). Mathematically, one can

solve for η(p) as

cη(p)ec[T (p,P)−T (qP ,P)]

ρη(p)(1− ec[T (p,P)−T (qP ,P)]) + c
= p =⇒ η(p) =

cp

ec[T (p,P)−T (qP ,P)](c+ ρp)− ρp
.

One can easily verify that η(qP ) = qP . Besides, Lemma 2 implies that η(p) is decreasing

in p.

Then we recover the second part (i.e. after time T (qP ;P)) of the belief martingale which

implements the stopping belief distribution τ . Suppose at time T (qP ;P), the belief mar-

tingale resumes at belief η(p) with some probability γ(p), which will be specified later,

for any p ∈ [qP , qR]; With the rest probability 1 −
∫ qR
qP
γ(p)dp, it resumes from belief 0. If

the belief martingale ends up resuming at belief η(p), then it either jumps to belief 0 or

follows the reporting process Q(ϕ(p)). Besides, whenever the belief martingale jumps to

belief 0, it then stays there forever. Under this belief martingale, the agent, contingent

on the fact that belief martingale resumes at η(p) at time T (qP ;P), will stop funding and

make decision at time T (p;P) if the belief martingale has not jumped to belief 0 until

then15. This therefore implements a stopping belief distribution τ(·; γ) where

τ(p; γ) =


γ(p)η(p)

p
, if p ∈ [qP , qR]

1−
∫
p∈[qP ,qR]

γ(p)η(p)
p

dp, if p = 0

0, otherwise

Consequently, in order to implement a stopping belief martingale τ , one should then set

γ(p; τ) =
τ(p)p

η(p)
, ∀p ∈ [qP , qR].

Next, We recover the first part (i.e. before time T (qP ;P)) of the belief martingale. Let

me define η̂(τ) as the weighted average of η(p) or mathematically,

η̂(τ) =

∫
p∈[qP ,qR]

γ(p; τ)∫
p∈[qP ,qR]

γ(p; τ)dp
η(p)dp.

15Whenever the belief martingale jumps to belief 0, the agent will stop funding and make decision imme-
diately;
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Then let me define the transition time ϕ̂(τ) with which the reporting process Q(ϕ̂(τ))

transits to belief η̂(τ) at time T (qP ) or mathematically,

qT (qP ;P)(ϕ̂(τ)) = η̂(τ).

Then the first part of belief martingale is specified as, starting from belief p0, it either

jumps to belief 0 (and then stays therefore forever) or transits based on reporting process

Q(ϕ̂(τ)).

Finally, let me combine the first and the second part of the belief martingale. If the

belief martingale has transited to belief η̂(τ) at time T (qP ;P), then it jumps to belief η(p)

with probability τ(p)p
η(p)

instantly, for any p ∈ [qP , qR]. One can then derive the underlying

weight accumulation speed λ∗(·; τ) as

λ∗(t; τ) =

1− p0

qt(ϕ̂(τ))
, if t ∈ [0, T (qP ;P))

1−
∫
p∈[qP ,qR]

τ(p)p
min{qt(ϕ(p)),p}dp, if t ∈ [T (qP ;P),∞)

In the following Lemma, we show that λ∗(·; τ) reaches the upper-bound of weight accu-

mulation speed. We rewrite Lemma 4 as the following lemma.

Lemma 13. For any pair of (λ, τ), which can be implemented by some direct and respon-

sive dynamic disclosure policy, λ∗(·; τ) is the fastest or

λ(t) ≤ λ∗(t; τ), ∀t ∈ [0,∞).

Proof. Let me define ϑ as follows

ϑ := inf{t : λ(t′) ≤ λ∗(t′; τ), ∀t′ ≥ t}.

Since λ(T (qR,P)) = τ(0) = λ∗(T (qR,P), τ), we have that ϑ ≤ T (qP , P ). Moreover if ϑ ≤

ϕ̂(τ), then ϑ = 0. This is due to the fact that

λ∗(t; τ) =

∫ t

s=0

λ(1− ps)ds,∀t ∈ t∗(τ)

which gives the upper-bound of weight accumulating speed. Our remaining task is to

show that ϑ = 0. Suppose the argument is not true, then ϑ > ϕ̂(τ). In the first step, we

show that λ(ϑ) ≤ λ∗(ϑ; τ). Suppose this is not true, then we argue that λ(ϑ) < τ(0). Since

λ(ϑ) ≤ τ(0), if the argument is wrong, then λ(ϑ) = τ(0). Since both disclosure policies

are responsive, we have that λ∗(ϑ; τ) = τ(0), which then leads to contradiction. At first,

we consider the scenario in which ϑ ≥ T (qP , P ). Moreover, the continuation payoff at ϑ

is given as follows (it is induced from Equation (25)),
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Uϑ(λ, τ) =


ρ

∫ ∞
ϑ

e−ρ(t−ϑ)[λ(t)− λ(ϑ)]m(0)dt+

∫
p∈(pϑ,qR]

e−ρ(T (p;P)−ϑ)τ(p)m(p)dp

−c
∫ ∞
ϑ

e−ρ(t−ϑ)[1− λ(t)−
∫
p∈[qP ,pt]

τ(p)dp]dt


1− λ(ϑ)−

∫
p∈[qP ,pϑ]

τ(p)dp

6


ρ

∫ ∞
ϑ

e−ρ(t−ϑ)[λ∗(t; τ)− λ(ϑ)]m(0)dt+

∫
p∈(pϑ,qR]

e−ρ(T (p;P)−ϑ)τ(p)m(p)dp

−c
∫ ∞
ϑ

e−ρ(t−ϑ)[1− λ∗(t; τ)−
∫
p∈[qP ,pt]

τ(p)dp]dt


1− λ(ϑ)−

∫
p∈[qP ,pϑ]

τ(p)dp

<


ρ

∫ ∞
ϑ

e−ρ(t−ϑ)[λ∗(t; τ)− λ∗(ϑ; τ)]m(0)dt+

∫
p∈(pϑ,qR]

e−ρ(T (p;P)−ϑ)τ(p)m(p)dp

−c
∫ ∞
ϑ

e−ρ(t−ϑ)[1− λ∗(t; τ)−
∫
p∈[qP ,pt]

τ(p)dp]dt


1− λ(ϑ)−

∫
p∈[qP ,pϑ]

τ(p)dp

=

∫
p∈(pϑ,qR]

τ(p)p
qϑ(ϕ(p))

m(qϑ(ϕ(p)))dp

1− λ(ϑ)−
∫
p∈[qP ,pϑ]

τ(p)dp
=

∫
p∈(pϑ,qR]

τ(p)p
qϑ(ϕ(p))

qϑ(ϕ(p))dp

1− λ(ϑ)−
∫
p∈[qP ,pϑ]

τ(p)dp

=
p0 −

∫
p∈[qP ,pϑ]

τ(p)dp

1− λ(ϑ)−
∫
p∈[qP ,pϑ]

τ(p)dp
= m(p̂ϑ(λ, τ))

The first inequality follows from the definition of ϑ, which implies that λ(t) ≤ λ∗(t; τ) for

any t > ϑ. The second inequality (the only strict inequality) follows from the assumption

that λ(ϑ) > λ∗(ϑ; τ). The second equality follows from three facts. At first, the numera-

tor of the term at the third line in the equation above is exactly the expected payoff to

the agent contingent on the fact he keeps funding research until then. Secondly, at time

t, the belief martingale assigns probability τ(p)p
qϑ(ϕ(p))

on belief qϑ(ϕ(p)). Thirdly, given our

constructed disclosure policy, the continuation payoff to the agent, upon receiving mes-

sage which implies posterior qϑ(ϕ(p)), is given by m(qϑ(ϕ(p))). The forth equality follows

from Bayesian plausibility constraint. The last equality follows from the definition of

p̂t(λ, τ), which is implied by Equation (23). At time ϑ, if the agent has not yet received

a message confirming the state being ω1 and forms belief p̂t(λ, τ), he, therefore, prefers

to stop funding, making decision right away, rather than keep funding research, putting

off decision making in the future. This then leads to the failure of implementation of

stopping belief distribution τ and therefore contradiction.

Similarly, in the case where ϑ ∈ (ϕ̂(τ), T (qP , P )), the continuation payoff at ϑ, given

direct and responsive disclosure policy (λ, τ), is
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Uϑ(λ, τ) =


ρ

∫ ∞
ϑ

e−ρ(t−ϑ)[λ(t)− λ(ϑ)]m(0)dt+

∫
p∈[qP ,qP ]

e−ρ(T (p;P)−ϑ)τ(p)m(p)dp

−c
∫ ∞
ϑ

e−ρ(t−ϑ)[1− λ(t)−
∫
p∈[qP ,pt]

τ(p)dp]dt


1− λ(ϑ)

≤


ρ

∫ ∞
ϑ

e−ρ(t−ϑ)[λ∗(t; τ)− λ(ϑ)]m(0)dt+

∫
p∈[qP ,qP ]

e−ρ(T (p;P)−ϑ)τ(p)m(p)dp

−c
∫ ∞
ϑ

e−ρ(t−ϑ)[1− λ∗(t; τ)−
∫
p∈[qP ,pt]

τ(p)dp]dt


1− λ(ϑ)

<


ρ

∫ ∞
ϑ

e−ρ(t−ϑ)[λ∗(t; τ)− λ∗(ϑ; τ)]m(0)dt+

∫
p∈[qP ,qP ]

e−ρ(T (p;P)−ϑ)τ(p)m(p)dp

−c
∫ ∞
ϑ

e−ρ(t−ϑ)[1− λ∗(t; τ)−
∫
p∈[qP ,pt]

τ(p)dp]dt


1− λ(ϑ)

=

p0

qϑ(ϕ̂(τ))
m(qϑ(ϕ̂(τ)))

1− λ(ϑ)
=

p0

qϑ(ϕ̂(τ))
qϑ(ϕ̂(τ))

1− λ(ϑ)
= m(p̂ϑ(λ, τ))

The second equality follows from the fact that, given our constructed belief martingale,

at ϑ ∈ (ϕ̂(τ), T (qP , P )), the agent assigns probability τ(p)p
qϑ(ϕ(p))

on belief qϑ(ϕ(p)). Moreover,

given this belief, the agent chooses to continue to fund research and gain continuation

payoff m(qϑ(ϕ(p))). The last equality follows from the definition of p̂ϑ(λ, τ). A contradic-

tion, again, has been reached. All in all, it can not be true that λ(ϑ) > λ∗(ϑ; τ), otherwise

stopping belief distribution τ can not be implemented.

If λ(ϑ) ≤ λ∗(ϑ; τ) and ϑ > 0, then for any ε > 0, there exists some t ∈ (ϑ− ε, ϑ) such that

λ(t) > λ∗(t; τ). At first, we focus on the case in which ϑ > T (qP , P ) (The case in which

ϑ ∈ (t∗(τ), T (qP , P )] is similar and therefore ignored) we pick ε small enough such that
m(0)

[c+ ρm(0)]ε
> 1

ϑ− ε > T (qP , P )

Therefore the continuation payoff at ϑ, given direct and responsive disclosure policy

(λ, τ), is given as follows
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Ut(λ, τ) =


ρ

∫ ∞
t

e−ρ(s−t)[λ(s)− λ(t)]m(0)ds+

∫
p∈(pt,qR]

e−ρ(T (p;P)−t)τ(p)m(p)dp

−c
∫ ∞
t

e−ρ(s−t)[1− λ(s)−
∫
p∈[qP ,ps]

τ(p)dp]ds


1− λ(t)−

∫
p∈[qP ,pt]

τ(p)dp

≤


ρ

∫ ∞
t

e−ρ(s−t)[λ∗(s; τ)− λ∗(t; τ)]m(0)ds+

∫
p∈(pt,qR]

e−ρ(T (p;P)−t)τ(p)m(p)dp

−c
∫ ∞
t

e−ρ(s−t)[1− λ∗(s; τ)−
∫
p∈[qP ,ps]

τ(p)dp]ds


1− λ(t)−

∫
p∈[qP ,pt]

τ(p)dp

+
[c+ ρm(0)]

∫ ϑ
t
e−ρ(s−t)[λ(s)− λ∗(s; τ)]ds− [λ(t)− λ∗(t; τ)]m(0)

1− λ(t)−
∫
p∈[qP ,pt]

τ(p)dp

= m(p̂t(λ, τ)) +
[c+ ρm(0)]

∫ ϑ
t
e−ρ(s−t)[λ(s)− λ∗(s; τ)]ds− [λ(t)− λ∗(t; τ)]m(0)

1− λ(t)−
∫
p∈[qP ,pt]

τ(p)dp

The first inequality follows from the following equation

ρ

∫ ∞
t

e−ρ(s−t)[λ(s)− λ(t)]m(0)ds

= ρ

∫ ϑ

t

e−ρ(s−t)[λ(s)− λ(t)]m(0)ds+ ρ

∫ ∞
ϑ

e−ρ(s−t)[λ(s)− λ(t)]m(0)ds

≤ ρ
∫ ϑ

t

e−ρ(s−t)[λ(s)− λ(t)]m(0)ds+ ρ

∫ ∞
ϑ

e−ρ(s−t)[λ∗(s; τ)− λ(t)]m(0)ds

=ρ

∫ ϑ

t

e−ρ(s−t)[λ∗(s; τ)− λ(t)]m(0)ds+ ρ

∫ ∞
ϑ

e−ρ(s−t)[λ∗(s; τ)− λ(t)]m(0)ds+ ρ

∫ ϑ

t

e−ρ(s−t)[λ(s)− λ∗(s; τ)]m(0)ds

= ρ

∫ ∞
t

e−ρ(s−t)[λ∗(s; τ)− λ(t)]m(0)ds+ ρ

∫ ϑ

t

e−ρ(s−t)[λ(s)− λ∗(s; τ)]m(0)ds

=ρ

∫ ∞
t

e−ρ(s−t)[λ∗(s; τ)− λ∗(t; τ)]m(0)ds− ρ
∫ ∞
t

e−ρ(s−t)ds[λ(t)− λ∗(t; τ)]m(0) + ρ

∫ ϑ

t

e−ρ(s−t)[λ(s)− λ∗(s; τ)]m(0)ds

=ρ

∫ ∞
t

e−ρ(s−t)[λ∗(s; τ)− λ∗(t; τ)]m(0)ds− [λ(t)− λ∗(t; τ)]m(0) + ρ

∫ ϑ

t

e−ρ(s−t)[λ(s)− λ∗(s; τ)]m(0)ds

Similarly, we also have that∫ ∞
s>t

e−ρ(s−t)[1− λ(s)−
∫
p∈[qP ,ps]

τ(p)dp]ds

>
∫ ∞
t

e−ρ(s−t)[1− λ∗(s; τ)−
∫
p∈p∈[qP ,ps]

τ(p)dp]ds−
∫
s∈(t,ϑ)

e−ρ(s−t)[λ(s)− λ∗(s; τ)]ds

The second equality follows from the previous argument and therefore ignored. Hence-

forth, to satisfy incentive compatibility constraint, it is required that

[c+ ρm(0)]

∫ ϑ

t

e−ρ(s−t)[λ(s)− λ∗(s; τ)]ds− [λ(t)− λ∗(t; τ)]m(0) ≥ 0.
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Therefore it requires that there exists some t1 ∈ (t, ϑ) such that

[c+ ρm(0)]e−ρ(t1−t)[λ(t1)− λ∗(t1; τ)](ϑ− t) > m(0)[λ(t)− λ∗(t; τ)]

Moreover since we have that

[c+ ρm(0)]e−ρ(t1−t)[λ(t1)− λ∗(t1; τ)](ϑ− t) 6 [c+ ρm(0)][λ(t1)− λ∗(t1; τ)]ε,

combining these two inequalities, we then have that

[λ(t1)− λ∗(t1; τ)] ≥ m(0)

[c+ ρm(0)]ε
[λ(t)− λ∗(t; τ)].

Since the term m(0)
[c+ρm(0)]ε

is strictly larger than 1, if we repeat this process by some finite

n times, we can find some tn ∈ (tn−1, ϑ) such that

[λ(tn)− λ∗(tn; τ)] ≥
[

m(0)

[c+ ρm(0)]ε

]n
[λ(t)− λ∗(t; τ)] > λ∗(ϑ; τ)− λ∗(t; τ),

which therefore achieves contradiction since λ(t) is monotonically increasing and λ(ϑ) ≤

λ∗(ϑ; τ). �

To end this subsection, we relax the assumption adopted at the beginning of this sub-

section by considering that

qT (qP ;P)(0) > η(qR).

Our next corollary shows that for any τπ which can be implemented by some direct and

responsive dynamic disclosure policy (π,M), then there exists some t ∈ [0, T (qP ;P)] such

that qT (qP ;P)(t) = η̂(τ).

Corollary 4. For any direct and responsive dynamic disclosure policy (π,M) with im-

plemented (λπ, τπ), then

qT (qP ;P)(0) ≤ η̂(τπ).

Proof. Suppose on the contrary, we have that qT (qP ;P)(0) > η̂(τπ) for some (λπ, τπ). Then

there exists ζ ∈ (0, 1) such that

ζqP + (1− ζ)η̂(τπ) = qT (qP ;P)(0).

Then let me denote (πF ,MF ) as the full information disclosure policy. Moreover, let me

define the following disclosure policy (π′,M ′) as, at time zero, the expert, commits to

dynamic disclosure policy (πF ,MF ) with probability ζ and to policy (π,M) with the rest



56 WEI ZHAO

probability 1− ζ. One then have that

U0(λπ
′
, τπ

′
) = ζU0(λπ

F

, τπ
F

) + (1− ζ)U0(λπ, τπ) > U0(λπ, τπ).

Moreover, Lemma 13 implies that

λ∗(t; τπ
′
) ≥ λπ

′
(t),∀t ∈ [0,∞).

Therefore, we have that

U0(λ∗(t; τπ
′
), τπ

′
) ≥ U0(λπ

′
, τπ

′
) > U0(λπ, τπ).

Moreover, by the definition of ζ, one then have that ϕ̂(τπ
′
) = 0. Therefore, we also have

that

m(p0) = U0(λ∗(t; τπ
′
), τπ

′
) > U0(λπ, τπ).

We have therefore reached a contradiction as (λπ, τπ) can not be implemented. �

C.9.5. Optimal stopping belief distribution τ . Our remaining task, after the procedures

of refinery in previous subsection, is to pin down the optimal stopping belief distribution

τ . To do this, let me remind you how we combine these two parts of belief martingales

in the previous subsection. To implement some stopping belief distribution τ , at time

T (qP ;P), the expert is supposed to conduct a splitting of η̂(τ) among interval [qP , η(qR)],

such that the induced belief martingale jumps to belief η(p) with probability γ̂(p; τ) =

γ(p;τ)∫
p∈[qp,qR]

γ(p;τ)dp
, for any p ∈ [qP , qR].

For any belief µ ∈ [qP , η(qR)], let me define Q̃µ as a margin belief process with starting

belief µ. Specifically,

q̃µt =
cµect

ρµ[1− ect] + c
∧ qt ≤ 1.

Then let me define θ̃(q) as the time when research progress process P with starting belief

qP intersects with the margin belief process Q̃µ. Mathematically,

cµecθ̃(µ)

ρµ[1− ecθ̃(µ)] + c
=

qP eλθ̃(µ)

qP (eλθ̃(µ) − 1) + 1
(26)

One can turn to Lemma 2 to show that θ̃(·) is well defined and strictly decreasing in µ.

One can simply verify that θ̃(qR) = 0. Finally, let me define value function Ṽ (µ) as

Ṽ (µ) = m(µ) + c

∫ θ̃(µ)

0

e−ρt
µ

q̃µt
dt.

Kamenica and Gentzkow [2011] implies that, fix some transition time t̂ ∈ [0, T (qP ;P)],

the optimal stopping belief distribution τ ∗(·; t̂) can be derived through concavification of
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Ṽ (·) within interval [qP , η(qR)] at belief pT (qP ;P)(t̂). Our next Lemma shows that Ṽ (·) is

concave within interval [qP , η(qR)], which, as an immediate corollary, implies that

τ ∗(p; t̂) =


p0

pθ(t̂)(t̂)
, if p = pθ(t̂)(t̂)

1− p0

pθ(t̂)(t̂)
, if p = 0

0, otherwise

We rewrite Lemma 5 as the following lemma.

Lemma 14. Ṽ (µ) is concave in µ for any µ ∈ [qP , η(qR)].

Proof. In the first step, we simplify Ṽ (µ) and show that Ṽ (µ) is concave in µ if and only

if function

W (µ) := −µe−(λ+ρ)θ̃(µ)

is concave in µ. One can rewrite Ṽ (µ) as follows

Ṽ (µ) = m(µ) + c
∫ θ̃(µ)

0
e−ρt µ

q̃µt
dt = µ+ c

∫ θ̃(µ)

0
e−ρt µ

cµect

ρµ(1−ect)+c

dt

= µ+
∫ θ̃(µ)

0
e−ρt ρµ(1−ect)+c

ect
dt = µ+

∫ θ̃(µ)

0
e−(ρ+c)t(ρµ+ c)dt− ρµ

∫ θ̃(µ)

0
e−ρtdt

= µ+ ρµ+c
ρ+c

(1− e−(ρ+c)θ̃(µ))− µ(1− e−ρθ̃(µ)) = ρµ+c
ρ+c

+ e−ρθ̃(µ)(µ− ρµ+c
ρ+c

e−cθ̃(µ))

= ρµ+c
ρ+c

+ e−ρθ̃(µ) cµ+ρµ−(ρµ+c)e−cθ̃(µ)

ρ+c

By the definition of θ(q), which is defined in Equation (26), one then have that

(ρµ+ c)e−cθ̃(µ) − ρµ =
cµ[qP + (1− qP )e−λθ̃(µ)]

qP
.

Therefore, one can further simplify Ṽ (µ) as

Ṽ (µ) =
ρµ+ c

ρ+ c
+e−ρθ̃(µ)

cµ− cµ[qP+(1−qP )e−λθ̃(µ)]
qP

ρ+ c
=
ρµ+ c

ρ+ c
−1− qP

qP
c

ρ+ c
µe−(λ+ρ)θ̃(µ) =

ρµ+ c

ρ+ c
+
1− qP

qP
c

ρ+ c
W (µ).

Therefore Ṽ ′′(µ) is negative in (qP , η(qR)) if and only if W ′′(µ) is negative in (qP , η(qR)).

Then let me take a derivative of W (·) as

W ′(µ) = −e−(λ+ρ)θ̃(µ) + (λ+ ρ)µe−(λ+ρ)θ̃(µ)θ̃′(µ) = e−(λ+ρ)θ̃(µ)[(λ+ ρ)µθ̃′(µ)− 1].

Further, let me take a derivative of W ′(·) as

W ′′(µ) = −e−(λ+ρ)θ̃(µ)[(λ+ ρ)µθ̃′(µ)− 1](λ+ ρ)θ̃′(µ) + e−(λ+ρ)θ̃(µ)(λ+ ρ)[θ̃′(µ) + µθ̃′′(µ)]

= e−(λ+ρ)θ̃(µ)(λ+ ρ)[2θ̃′(µ) + µθ̃′′(µ)− (λ+ ρ)(θ̃′(µ))2]
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Our remaining task is to show that the term

2θ̃′(µ) + µθ̃′′(µ)− (λ+ ρ)(θ̃′(µ))2 < 0 (27)

In the second step, we show that the term

2θ̃′(µ) + µθ′′(µ) + µ
c(c+ ρ) + (λ− c)2 1−qP

qP
e−λθ̃(µ)

(c+ ρ)− 1−qP
qP

(λ− c)e−λθ̃(µ)
(θ̃′(µ))2 = 0,

for any µ ∈ (qP , η(qR)). Then Equation (27) immediately follows since θ′(µ) is strictly

negative from Lemma 2. From Equation (26) implies that

cµecθ̃(µ)

ρµ(1−ecθ̃(µ))+c
= qP eλθ̃(µ)

qP (eλθ̃(µ)−1)+1
⇒ c

(ρ+ c
µ

)e−cθ̃(µ)−ρ
= qP

qP+(1−qP )e−λθ̃(µ)

⇒ c[qP + (1− qP )e−λθ̃(µ)] = qP [(ρ+ c
µ
)e−cθ̃(µ) − ρ]⇒ ρ+ c

µ
= (c+ ρ)ecθ̃(µ) + c(1−qP )

qP
e−(λ−c)θ̃(µ)

Let me take derivative of µ on both sides of the equation above, one then have that

− c
µ2 = (c+ ρ)ecθ̃(µ)cθ̃′(µ) + c(1−qP )

qP
e−(λ−c)θ̃(µ)(−1)(λ− c)θ̃′(µ)

⇒ − 1
µ2 = ecθ̃(µ)θ̃′(µ)[(c+ ρ)− 1−qP

qP
(λ− c)e−λθ̃(µ)]

(28)

One can easily verify that θ̃′(µ) is strictly negative in interval (qP , η(qR)) from Equation

(28) since
1− qP

qP
e−λθ̃(q) <

1− qP

qP
=

1− λ−c
λ+ρ

λ−c
λ+ρ

=
c+ ρ

λ− c
,

for any µ ∈ (qP , η(qR)). Let me further take derivative of µ on both sides of the Equation

(28), one then have that

2
µ3 = ecθ̃(µ)c(θ̃′(µ))2[(c+ ρ)− 1−qP

qP
(λ− c)e−λθ̃(µ)] + ecθ̃(µ)θ̃′′(µ)[(c+ ρ)− 1−qP

qP
(λ− c)e−λθ̃(µ)]

+ecθ̃(µ) 1−qP
qP

λ(λ− c)e−λθ̃(µ)(θ̃′(µ))2

= ecθ̃(µ)[(c+ ρ)− 1−qP
qP

(λ− c)e−λθ̃(µ)]

[
θ̃(µ) +

c(c+ρ)+(λ−c)2 1−qP

qP
e−λθ̃(µ)

(c+ρ)− 1−qP
qP

(λ−c)e−λθ̃(µ)

]

Moreover Equation (28) implies that

2

µ3
= (− 2

µ
)× (− 1

µ2
) = − 2

µ
ecθ̃(µ)θ̃′(µ)[(c+ ρ)− 1− qP

qP
(λ− c)e−λθ̃(µ)].

Accordingly, we have that

ecθ̃(µ)[(c+ ρ)− 1−qP
qP

(λ− c)e−λθ̃(µ)]

[
θ̃′′(µ) +

c(c+ρ)+(λ−c)2 1−qP

qP
e−λθ̃(µ)

(c+ρ)− 1−qP
qP

(λ−c)e−λθ̃(µ)

]
= −2

q
ecθ̃(µ)θ̃′(µ)[(c+ ρ)− 1−qP

qP
(λ− c)e−λθ̃(µ)]

⇒
ecθ̃(µ)[(c+ρ)− 1−qP

qP
(λ−c)e−λθ̃(µ)]

q

[
2θ̃′(µ) + µθ̃′′(µ) + µ

c(c+ρ)+(λ−c)2 1−qP

qP
e−λθ̃(µ)

(c+ρ)− 1−qP
qP

(λ−c)e−λθ̃(µ)
(θ̃′(µ))

2

]
= 0
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The argument has therefore been shown. �

C.10. Derivation of one-step-ahead process in Section 4.5. Equation (8) implies

that

dqt
qt

[m(0)− u(a1; 0)] = [ρm(qt) + c]dt

⇔ dqt
qt[ρm(qt) + c]

=
dt

m(0)− u(a1; 0)

⇔ dqt
qt [ρ[u(a1; 1)− u(a1; 0)]qt + ρu(a1; 0) + c]

=
dt

m(0)− u(a1; 0)

⇔dqt
qt
− ρ[u(a1; 1)− u(a1; 0)]dqt
ρ[u(a1; 1)− u(a1; 0)]qt + ρu(a1; 0) + c

=
[ρu(a1; 0) + c]dt

m(0)− u(a1; 0)

⇔d ln qt − d ln [ρ[u(a1; 1)− u(a1; 0)]qt + ρu(a1; 0) + c] =
[ρu(a1; 0) + c]dt

m(0)− u(a1; 0)

⇔d ln

[
qt

ρ[u(a1; 1)− u(a1; 0)]qt + ρu(a1; 0) + c

]
=

[ρu(a1; 0) + c]dt

m(0)− u(a1; 0)

⇔ qt
ρ[u(a1; 1)− u(a1; 0)]qt + ρu(a1; 0) + c

=
q0

ρ[u(a1; 1)− u(a1; 0)]q0 + ρu(a1; 0) + c
exp

(
[ρu(a1; 0) + c]

m(0)− u(a1; 0)
t

)

⇔qt =
[ρu(a1; 0) + c] exp

(
[ρu(a1;0)+c]
m(0)−u(a1;0)

t
)

ρ[u(a1; 1)− u(a1; 0)]
[
exp

(
[ρu(a1;0)+c]
m(0)−u(a1;0)

t
)
− 1
]

+ ρu(a1;0)+c
q0

.

C.11. Proof of Proposition 2 and 3. All results prior Lemma 5 holds. We then show

that if u(a2;ω2) ≥ u(a1;ω1), Lemma 14 holds.

We at first consider the definition of θ̃(µ), given as follows

qP eλθ̃(µ)

qP eλθ̃(µ) + (1− qP )
=

µ[ρu(a2;ω1) + c] exp
(

ρu(a2;ω1)+c
u(a1;ω1)−u(a2;ω1)

θ̃(µ)
)

{ρµ[u(a2;ω2)− u(a2;ω1)] + ρu(a2;ω1) + c} − ρµ[u(a2;ω2)− u(a2;ω1)] exp
(

ρu(a2;ω1)+c
u(a1;ω1)−u(a2;ω1)

t
) ,

which then implies that

1− qP

qP
e−λθ̃(µ)+1+

ρ[u(a2;ω2)− u(a2;ω1)]

ρu(a2;ω1) + c
=
ρµ[u(a2;ω2)− u(a2;ω1)] + ρu(a2;ω1) + c

µ[ρu(a2;ω1) + c]
exp

(
−

ρu(a2;ω1) + c

u(a1;ω1)− u(a2;ω1)
θ̃(µ)

)
(29)
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The expert’s continuation payoff is given by

Ṽ (µ) = m(µ) + c

∫ θ̃(µ)

0
e−ρt

µ

q̃µt
dt

= m(µ) + c

∫ θ̃(µ)

0
e−ρt

µ

[ρu(a2;ω1)+c] exp
(

ρu(a2;ω1)+c
u(a1;ω1)−u(a2;ω1)

t
)

ρ[u(a2;ω2)−u(a2;ω1)]
[
1−exp

(
ρu(a2;ω1)+c

u(a1;ω1)−u(a2;ω1)
t
)]

+
ρu(a2;ω1)+c

µ

dt

= m(µ) + c

∫ θ̃(µ)

0
e−ρt

(
ρµ[u(a2;ω2)− u(a2;ω1)] + ρu(a2;ω1) + c

ρu(a2;ω1) + c
exp

(
−

ρu(a2;ω1) + c

u(a1;ω1)− u(a2;ω1)
t

)
−
ρµ[u(a2;ω2)− u(a2;ω1)]

ρu(a2;ω1) + c

)
dt

= m(µ)− c
ρµ[u(a2;ω2)− u(a2;ω1)]

ρu(a2;ω1) + c

∫ θ̃(µ)

0
e−ρtdt+ c

ρµ[u(a2;ω2)− u(a2;ω1)] + ρu(a2;ω1) + c

ρu(a2;ω1) + c

∫ θ̃(µ)

0
exp

(
−
(
ρ+

ρu(a2;ω1) + c

u(a1;ω1)− u(a2;ω1)

)
t

)
dt

=

m(µ)− c
ρµ[u(a2;ω2)− u(a2;ω1)]

ρu(a2;ω1) + c

1

ρ
(1− e−ρθ̃(µ))

+c
ρµ[u(a2;ω2)− u(a2;ω1)] + ρu(a2;ω1) + c

ρu(a2;ω1) + c

u(a1;ω1)− u(a2;ω1)

ρ[u(a1;ω1)− u(a2;ω1)] + ρu(a2;ω1) + c

[
1− exp

(
−
(
ρ+

ρu(a2;ω1) + c

u(a1;ω1)− u(a2;ω1)

)
θ̃(µ)

)]

=

f(µ) + c
µ[u(a2;ω2)− u(a2;ω1)]

ρu(a2;ω1) + c
e−ρθ̃(µ)

−c
u(a1;ω1)− u(a2;ω1)

ρ[u(a1;ω1)− u(a2;ω1)] + ρu(a2;ω1) + c

ρµ[u(a2;ω2)− u(a2;ω1)] + ρu(a2;ω1) + c

ρu(a2;ω1) + c
exp

(
−
(
ρ+

ρu(a2;ω1) + c

u(a1;ω1)− u(a2;ω1)

)
θ̃(µ)

),

for some linear function f(·).
Then we insert Equation (29) into the formula of Ṽ (µ), one then have that

Ṽ (µ) = f(µ) + e−ρθ̃(µ)

{
c
µ[u(a2;ω2)− u(a2;ω1)]

ρu(a2;ω1) + c
− cµ

u(a1;ω1)− u(a2;ω1)

ρ[u(a1;ω1)− u(a2;ω1)] + ρu(a2;ω1) + c

[
1− qP

qP
e−λθ̃(µ) + 1 +

ρ[u(a2;ω2)− u(a2;ω1)]

ρu(a2;ω1) + c

]}

= f(µ)− c
u(a1;ω1)− u(a2;ω1)

ρ[u(a1;ω1)− u(a2;ω1)] + ρu(a2;ω1) + c

[
1− qP

qP
µe−(λ+ρ)θ̃(µ) +

ρ[u(a2;ω2)− u(a1;ω1)]

ρu(a2;ω1) + c
µe−ρθ̃(µ)

]
.

Equation (29) implies that

1− qP

qP
exp

([
ρu(a2;ω1) + c

u(a1;ω1)− u(a2;ω1)
− λ
]
θ̃(µ)

)
+
ρu(a2;ω1) + c+ ρ[u(a2;ω2)− u(a2;ω1)]

ρu(a2;ω1) + c
exp

(
ρu(a2;ω1) + c

u(a1;ω1)− u(a2;ω1)
θ̃(µ)

)
=
ρ[u(a2;ω2)− u(a2;ω1)]

ρu(a2;ω1) + c
+

1

µ
(30)

Take derivative of Equation (30) with respect to µ on both sides, we then have that

−
1

µ2
= −

1− qP

qP
exp

([
ρu(a2;ω1) + c

u(a1;ω1)− u(a2;ω1)
− λ
]
θ̃(µ)

)[
λ−

ρu(a2;ω1) + c

u(a1;ω1)− u(a2;ω1)

]
θ̃′(µ)

+
ρu(a2;ω1) + c+ ρ[u(a2;ω2)− u(a2;ω1)]

ρu(a2;ω1) + c
exp

(
ρu(a2;ω1) + c

u(a1;ω1)− u(a2;ω1)
θ̃(µ)

)
ρu(a2;ω1) + c

u(a1;ω1)− u(a2;ω1)
θ̃′(µ)

=θ̃′(µ) exp

(
ρu(a2;ω1) + c

u(a1;ω1)− u(a2;ω1)
θ̃(µ)

)[
ρu(a2;ω1) + c+ ρ[u(a2;ω2)− u(a2;ω1)]

u(a1;ω1)− u(a2;ω1)
−

1− qP

qP

[
λ−

ρu(a2;ω1) + c

u(a1;ω1)− u(a2;ω1)

]
e−λθ̃(µ)

]
(31)

Take derivative of Equation (31) with respect to µ on both sides, we then have that
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2

µ3
=θ̃′′(µ) exp

(
ρu(a2;ω1) + c

u(a1;ω1)− u(a2;ω1)
θ̃(µ)

)
g(µ)

+
ρu(a2;ω1) + c

u(a1;ω1)− u(a2;ω1)

(
θ̃′(µ)

)2

exp

(
ρu(a2;ω1) + c

u(a1;ω1)− u(a2;ω1)
θ̃(µ)

)
g(µ)

+ λ exp

(
ρu(a2;ω1) + c

u(a1;ω1)− u(a2;ω1)
θ̃(µ)

)(
θ̃′(µ)

)2 1− qP

qP

[
λ− ρu(a2;ω1) + c

u(a1;ω1)− u(a2;ω1)

]
e−λθ̃(µ)

(32)

where

g(µ) =
ρu(a2;ω1) + c+ ρ[u(a2;ω2)− u(a2;ω1)]

u(a1;ω1)− u(a2;ω1)
− 1− qP

qP

[
λ− ρu(a2;ω1) + c

u(a1;ω1)− u(a2;ω1)

]
e−λθ̃(µ)

Moreover, Equation (30) implies that

2

µ3
=− 2

µ
×− 1

µ2

=− 2

µ
θ̃′(µ) exp

(
ρu(a2;ω1) + c

u(a1;ω1)− u(a2;ω1)
θ̃(µ)

)
g(µ) (33)

Combining Equation (32) and (33), one then have that

0 =θ̃′′(µ) exp

(
ρu(a2;ω1) + c

u(a1;ω1)− u(a2;ω1)
θ̃(µ)

)
g(µ)

+
ρu(a2;ω1) + c

u(a1;ω1)− u(a2;ω1)

(
θ̃′(µ)

)2

exp

(
ρu(a2;ω1) + c

u(a1;ω1)− u(a2;ω1)
θ̃(µ)

)
g(µ)

+ λ exp

(
ρu(a2;ω1) + c

u(a1;ω1)− u(a2;ω1)
θ̃(µ)

)(
θ̃′(µ)

)2 1− qP

qP

[
λ− ρu(a2;ω1) + c

u(a1;ω1)− u(a2;ω1)

]
e−λθ̃(µ)

+
2

µ
θ̃′(µ) exp

(
ρu(a2;ω1) + c

u(a1;ω1)− u(a2;ω1)
θ̃(µ)

)
g(µ),

which then implies that

µθ̃′′(µ) + 2θ̃′(µ) +

 ρu(a2;ω1) + c

u(a1;ω1)− u(a2;ω1)
+
λ1−qP

qP

[
λ− ρu(a2;ω1)+c

u(a1;ω1)−u(a2;ω1)

]
e−λθ̃(µ)

g(µ)

µ(θ̃′(µ)
)2

= 0

(34)

We then show that the function −µe−αµ is concave in µ for any constant α > 0. Take the

first derivative of −µe−αθ̃(µ) with respect to µ, one then have that

d− µe−αθ̃(µ)

dµ
= e−αθ̃(µ)[αµθ̃′(µ)− 1]

Take the second derivative of −µe−αθ̃(µ) with respect to µ, one thne have that

d2 − µe−αθ̃(µ)

(dµ)2
= e−αθ̃(µ)α[2θ̃′(µ) + µθ̃′′(µ)− α(θ̃′(µ))2] < 0.
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The inequality is due to Equation (34).

Therefore, we argue that if u(a2;ω2) − u(a1;ω1) ≥ 0, then the function Ṽ (µ) is strictly

concave in µ. All our results hold. On the other hand, if u(a2;ω2)−u(a1;ω1) < 0, then the

function Ṽ (µ) may be convex in µ. We then need persuasion to concavify Ṽ (µ).

C.12. Derivation of research progress process P̂. The derivation of the research

progress process P̃ is similar to that of the process P except that the intensity coefficient

λ in the later process being replaced with the coefficient λ(1− 2ψ) in the former process.

The rest part of this subsection is devoted into the derivation of the belief martingale

τ F 16, induced by expert’s information acquisition. Specifically, at any time t, the support

of τFt is given by supp(τFt ) = {0, pt, 1}. Moreover, at any time t, Bayesian persuasion

constraint then implies that

τFt (0) + τFt (pt) + τFt (1) = 1 (35)

τFt (0)0 + τFt (pt)pt + τFt (1)1 = p0 (36)

At time t+ dt, the probability τt+dt(1) on belief 1 is given by

τFt+dt(1) = τFt (1) + τFt (pt)ptλψdt =⇒ dτFt (1) = τFt (pt)ptλψdt

Introducing Equation (36) into the equation above, one then have that

dτFt (1) = [p0 − τFt (1)]λψdt⇒ dτFt (1)

p0 − τFt (1)
= λψdt⇒ d

(
− ln(p0 − τFt (1))

)
= dλψt

⇒ ln(p0 − τF0 (1))− ln(p0 − τFt (1)) = λψt⇒ ln
p0 − τF0 (0)

p0 − τFt (1)
= λψt

⇒ τFt (1) = p0 − (p0 − τF0 (t))e−λψt = p0 − p0e
−λψt

Besides, based on Equation (36), the probability τFt (pt) on belief pt is given by

τFt (pt) =
p0 − τFt (1)

pt
=
p0 −

(
p0 − p0e

−λψt)
pt

=
p0

pt
e−λψt.

Finally, based on Equation (35) implies that the probability τt(0) on belief 0 is given by

τFt (0) = 1− τFt (1)− τFt (pt) = 1−p0

(
1− e−λψt

)
− p0

pt
e−λψt = (1−p0)−

p0

pt
e−λψt(1−pt) = (1−pt)

[
1− p0

1− pt
− p0

pt
e−λψt

]

16The up-script F stands for full information disclosure.
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C.13. Derivation of margin belief process Q̃. Let me denote ζt ∈ ∆(∆ {ω1, ω2}) as

a belief martingale with support {0, qt+dt, 1}. To meet the condition of perfectly disclos-

ing breakthrough signal b2 immediately whenever receiving it, we therefore set ζt(1) as

the probability that the researcher privately observes this signal. Mathematically, the

following equation holds,

ζt(1) =
q̃t
p̃t
p̃tλψdt = q̃tλψdt (37)

Besides, increment dq̃t = q̃t+dq − q̃t is set such that the policymaker is indifferent be-

tween making decision immediately and funding research for another dt period, being

better informed under belief martingale ζt and putting off decision making dt period

later. Mathematically, q̃t+dt (or dq̃t) solves the following equation

m(q̃t) = −cdt+ e−ρdt [ζt(0)m(0) + ζt(q̃t+dt)m(q̃t+dt) + ζt(1)m(1)] (38)

Denote q = λψ−c
λψ+ρ

, one could then solve for dq̃t as

dq̃t = (ρ+ λψ)q̃t
(
q̃t − q

)
dt (39)

Bayesian plausibility implies that ζt(0) + ζt(q̃t+dt) + ζt(1) = 1

ζt(0)0 + ζt(q̃t+dt)q̃t+dt + ζ1(1)1 = q̃t
(40)

Combining Equation (37), (38) and (40) then implies Equation (39).

Furthermore, At first, we have the following equation

1

q

(
dq̃t
q̃t − q

− dq̃t
q̃t

)
=

dq̃t
(q̃t − q)q̃t

= (λψ + ρ)dt

As for the LHS of the equation above, one then have that

1

q

(
dq̃t
q̃t − q

− dq̃t
q̃t

)
=

1

q
[d ln(q̃t − q)− d ln q̃t] =

1

q
d ln

(
q̃t − q
q̃t

)
.

For any q0 ∈
[

1
2
, 1
]
∩
(
q, 1
]
, one, through combine these two equations above, then have

that

1

q

[
ln

(
q̃t − q
q̃t

)
− ln

(
q0 − q
q0

)]
= (λψ + ρ)t⇒ ln

(
q̃t − q
q̃t

q0

q0 − q

)
= (λψ + ρ)t

⇒
q̃t − q
q̃t

q0

q0 − q
= eq(λψ+ρ)t ⇒

q̃t − q
q̃t

=
q0 − q
q0

eq(λψ+ρ)t ⇒ 1−
q

q̃t
=
q0 − q
q0

eq(λψ+ρ)t

⇒
q

q̃t
= 1−

q0 − q
q0

eq(λψ+ρ)t ⇒ q̃t =
q

1− q0−q
q0
eq(λψ+ρ)t

=
q

1− q0−q
q0
e(λψ−c)t
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C.14. Properties of function η̃(·) and θ̃(·). Let me define function χ̃(t; t̃) as the differ-

ence between the margin belief process Q̃(p̃t̃, t̃) and the research progress process P̃ at

time t. Or mathematically, it is defined as

χ̃(t; t̃) := q̃t(p̃t̃, t̃)− p̃t.

Denote s := max
{
T (1

2
; P̃ ), 0

}
. In the first step, we will show that χ̃(t; t̃) is convex in t

within interval t ∈
[
s, T

(
1; Q̃(p̃t̃, t̃)

)]
, for any t̃ ∈ T. Specifically, we have that

∂2χ̃(t; t̃)

∂t2
=
∂
∂q̃t(p̃t̃,t̃)

∂t

∂t
−
∂ ∂p̃t
∂t

∂t
=
∂
[
(ρ+ λψ)q̃t(p̃t̃, t̃)

(
q̃t(p̃t̃, t̃)− t

)]
∂t

− ∂ [λ(1− 2ψ)p̃t (1− p̃t)]
∂t

= (ρ+ λψ)
(
2q̃t(p̃t̃, t̃)− q

) ∂q̃t(p̃t̃, t̃)
∂t

+ λ(1− 2ψ) (2p̃t − 1)
∂p̃t
∂t

> 0

Moreover, one also have that

∂χ(t̃, t̃)

∂t
= (ρ+ λψ)q̃t̃(p̃t̃, t̃)

(
q̃t̃(p̃t̃, t̃)− t

)
− λ(1− 2ψ)p̃t̃(1− p̃t̃) = (ρ+ λψ)p̃t̃(p̃t̃ − t)− λ(1− 2ψ)p̃t̃(1− p̃t̃)

= p̃t̃ [(ρ+ λψ)(p̃t̃ − t)− λ(1− 2ψ)(1− p̃t̃)] = [λ(1− ψ) + ρ]p̃t̃
(
p̃t̃ − q̃P

)
≤ 0,

where equality holds if and only if p̃t̃ = q̃P . Therefore, for any t̃ ∈ T, χ̃(t; t̃) = 0 has

exactly two solutions if t̃ < T (q̃P ; P̃) and has a single solution if t̃ = T (q̃P ; P̃). Therefore,

both the function η̃(·) and θ̃(·).

For any p, p′ ∈
[
q̃P , q̃R

]
such that p < p′, one then have that q̃T (p;P̃)(p

′, T (p′; P̃)) < p̃T (p;P̃) =

p = q̃T (p;P̃)(p, T (p; P̃)), which then implies that

η̃(p′) = q̃T (q̃P ;P̃)(p
′, T (p′; P̃)) < q̃T (q̃P ;P̃)(p, T (p; P̃)) = η̃(p).

Moreover, θ̃(µ) is decreasing in µ.

C.15. The belief martingale induce by the optimal disclosure policy. In this sub-

section, we characterize the belief martingale γ∗, induced by the optimal disclosure pol-

icy proposed in Proposition 4.

For any t ∈ [0, t̃∗), then γ∗t (·) is given as

γ∗t (p) =



p0

[
1−p0

p0
− 1−p̃t

p̃t
e−λψt

]
if p = 0

p0

p
e−λψt if p = p̃t

p0 − p0e
−λψt if p = 1

0 otherwise
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For any t ∈
[
t̃∗, θ̃(µ̄(t̃∗))

)
, then γ∗t (·) is given as

γ∗t (p) =



p0

[
1−p0

p0
− 1−q̃t(p̃t̃∗ ,t̃∗)

q̃t(p̃t̃∗ ,t̃
∗)
e−λψt

]
if p = 0

p0

p
e−λψt if p = q̃t(p̃t̃∗ , t̃

∗)

p0 − p0e
−λψt if p = 1

0 otherwise

Denote belief βt = min
{
q̃t

(
µ(t̃∗), T (q̃P ; P̃)

)
, p̃θ̃(µ(t̃∗))

}
and probability

υ =
q̃θ̃(µ(t̃∗))(µ̄(t̃∗),T (q̃P ;P̃))−q̃θ̃(µ(t̃∗))(p̃t̃∗ ,t̃

∗)

q̃θ̃(µ(t̃∗))(µ̄(t̃∗),T (q̃P ;P̃))−p̃θ̃(µ(t̃∗))
. For any t ≥ θ̃(µ̄(t̃∗)), γ∗t (·) is given by

γ∗t (p) =



p0

q̃θ̃(µ̄(t̃∗))(p̃t̃∗ ,t̃
∗)
υe−λψθ̃(µ̄(t̃∗)) if p = p̃θ̃(µ̄(t̃∗))

p0

q̃θ̃(µ̄(t̃∗))(p̃t̃∗ ,t̃
∗)
(1− υ)

q̃θ̃(µ̄(t̃∗))(µ(t̃∗),T (q̃P ;P̃))
βt

e−λψmin{t,θ̃(µ(t̃∗))} if p = βt

p0

(
1− e−λψθ̃(µ̄(t̃∗))

)
+

p0

q̃θ̃(µ̄(t̃∗))(p̃t̃∗ ,t̃
∗)
(1− υ)q̃θ̃(µ̄(t̃∗))

(
µ(t̃∗), T (q̃P ; P̃)

)(
e−λψθ̃(µ̄(t̃∗)) − e−λψmin{t,θ̃(µ(t̃∗))}

)
if p = 1

1− γ∗t (p̃θ̃(µ̄(t̃∗)))− γ
∗
t (βt)− γ∗t (1) if p = 0

0 otherwise

Proposition 4 can also be rewritten as the following proposition.

Proposition 5. The optimal disclosure policy (π̃∗, M̃∗) induces a belief martingale γ∗.

C.16. Proof of Proposition 4. Our proof only focuses on the case where p0 ≥ 1
2

and a

similar proof can be extended to cover the case where p0 ∈ [p
0
, 1

2
). One can easily show

that both responsiveness with restricted interval [q̃P , q̃R] and directness still hold in

this scenario of general information structure. For any direct and responsive disclosure

policy (π,M), let me denote the induced belief martingale as τ π and the stopping belief

distribution as τπ. Moreover, let me denote the weight accumulation speed λ̃π as

λ̃π(t) = τπt (1) + τπt (0).

For any stopping belief distribution τ ∈ ∆
(
0, 1 ∪

[
q̃P , q̃R

])
, we then define a belief mar-

tingale τ̃ ∗(·; τ) with the fastest weight accumulation speed λ̃∗(·; τ), which induces the

stopping belief distribution τ . For any belief p ∈
[
q̃P , q̃R

]
, let me denote γ̃(p) as follows,

γ̃(p)
η̃(p)

q̃P
q̃P

p
e−λψ[T (p̃;P̃)−T (q̃P ;P̃)] = τ(p) =⇒ γ̃(p) = τ(p)

p

η̃(p)
eλψ[T (p̃;P̃)−T (q̃P ;P̃)]
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Basically, γ̃(p) is defined as the probability on belief η̃(p) such that the induced belief

martingale reaches belief p with probability τ(p). Let me normalize γ(p) by defining

γ̃′(p) = γ̃(p)∫
p∈[q̃P ,q̃R] γ̃(p)dp

. Then denote η′(τ) as

η̃′(τ) =

∫
p∈[q̃P ,q̃R]

η̃(p)γ̃′(p)dp.

Next, for any τ such that there exists some t̃ ∈ T such that q̃T (q̃P ;P̃)(p̃t̃, t̃) ≥ η̃′(τ), we

define ϕ̃(τ) implicitly as the solution to the following equation

q̃T (q̃P ;P̃)(p̃ϕ̃(τ), ϕ̃(τ)) = η̃′(τ).

Basically, ϕ̃(τ) is defined as the tranisition time with which the reporting process reaches

the belief η̃′(τ) at time T (q̃P ; P̃).

Finally, let me define the belief martingale τ ∗(·; τ). For any t ∈ [0, ϕ̃(τ)), the belief mar-

tigale τ̃ ∗(·; τ) is consistent with τ̃ F . For any t ∈
[
ϕ̃(τ), T (q̃P ; P̃)

)
, the belief martingale

τ̃ ∗t (·; τ) is defined as

τ̃ ∗t (q; τ) =



(1− p0)− e−λt 1−q̃t(p̃ϕ̃(τ),ϕ̃(τ))
q̃t(p̃ϕ̃(τ),ϕ̃(τ))

if q = 0

p0

q̃t(p̃ϕ̃(τ),ϕ̃(τ))
e−λψt if q = q̃t

(
p̃ϕ̃(τ), ϕ̃(τ)

)
p0

(
1− e−λψt

)
if q = 1

0 otherwise

For any t ≥ T (q̃P ; P̃), the belief martingale τ̃ ∗t (·; τ) is defined as follows

τ̃ ∗t (q; τ) =



τ(q) if q ∈ [q̃P , p̃t]

γ̃(p)η̃(p)

q̃t(η̃(p),T (q̃P ,P̃))
e−λψ(t−T (q̃P ,P̃)) if q = q̃t

(
η̃(p), T (q̃P , P̃)

)
,

∀p ∈
(
p̃t, q̃

R
]

p0

(
1− e−λψT (q̃P ,P̃)

)
+
∫
p∈[q̃P ,q̃R]

γ̃(p)η̃(p)

min{p,q̃t(η̃(p),T (q̃P ,P̃))}e
−λψ[min{t,T (p;P̃)}−T (q̃P ,P̃)] if p = 1

1−
∫
q∈[q̃P ,p̃t]

τ̃ ∗t (q; τ)dq −
∫
p∈(p̃t,q̃R] τ̃

∗
t

(
q̃t
(
η̃(p), T (q̃P , P̃)

)
; τ
)
dp− τ̃ ∗t (1; τ) if p = 0

0 otherwise

Then let me define the corresponding weight accumulation speed λ̃∗(t; τ) as

λ̃∗(t; τ) = τ̃ ∗t (0; τ) + τ̃ ∗t (1; τ).

Our next lemma shows that the weight accumulation speed λ̃∗(t; τ) is the fastest among

all direct and responsive disclosure policies (π,M) which share the same stopping belief

distribution, i.e., τπ = τ .
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Lemma 15. For any direct and responsive (with restricted range) disclosure policy (π,M),

which induces weight accumulation speed λ̃π and stopping belief distribution τπ such

that

q̃T (q̃P ;P̃)(p̃t̃, t̃) ≥ η̃′(τπ), ∃t̃ ∈ T

we then have that

λ̃∗(t; τπ) ≥ λ̃π(t),∀t ≥ 0.

Proof. Given any direct and responsive disclosure policy (π,M), the agent’s belief α(t; π),

contingent on event where he still funds the expert at time t, is given as

α(t; π) =
p0 − τ̃ πt (1)−

∫
p∈[q̃P ,p̃t]

τπ(p)pdp

1− λ̃π(t)−
∫
p∈[q̃P ,p̃t]

τπ(p)dp
.

Moreover, under this disclosure policy, the expert and agent’s payoff are given byṼ (λ̃π, τπ) = ρ
∫∞
t=0

e−ρtλ̃π(t)dt+
∫
p∈[q̃P ,q̃R]

e−ρT (p;P̃)m(p)dp

Ũ(λ̃π, τπ) = Ṽ (λ̃π, τπ)− c
∫ T (q̃R;P̃)

t=0

[
1− λ̃π(t)−

∫
p∈[q̃P ,p̃t]

τπ(p)dp
]

At time t, the expert and agent’s continuation payoff, contingent on the event that the

agent still funds the research, are given by
Ṽt(λ̃

π, τπ) =
ρ
∫∞
t e−ρ(s−t)[λ̃π(s)−λ̃π(t)]ds+

∫
p∈(p̃t,q̃P ] e

−ρ[T (p;P̃)−t]m(p)τπ(p)dp

1−λ̃π(t)−
∫
p∈[q̃P ,p̃t]

τπ(p)dp

Ũt(λ
π, τπ) =

ρ
∫∞
t e−ρ(s−t)[λ̃π(s)−λ̃π(t)]ds+

∫
p∈(p̃t,q̃P ] e

−ρ[T (p;P̃)−t]m(p)τπ(p)dp−c
∫ T (q̃R,P̃)
t e−ρ(s−t)[1−λ̃π(s)−

∫
p∈[q̃P ,p̃s]

τπ(p)dp]ds
1−λπ(t)−

∫
p∈[q̃P ,p̃t]

τπ(p)dp

Please note that the combination of weight accumulation speed λ̃π and stopping belief

distribution τπ is sufficient statistic of any direct and responsive disclosure policy (π,M)

in determining the payoffs.

For any pair of (λ̃, τ) which can be induced by some direct and responsive disclosure

policy (π,M), let me define ϑ′ as follows

ϑ′ := inf
{
t : λ̃(t′) ≤ λ̃∗(t′, τ), ∀t′ ≥ t

}
.

Since λ̃π(T (q̃R; P̃)) = τ(0) + τ(1), one then have that ϑ′ ≤ T (q̃R; P̃). Moreover if ϑ′ ≤

ϕ̃(τ), then ϑ′ = 0. This is due to the fact that λ̃∗(·; τ) is consistent with that under full

information disclosure, which reaches the upper-bound of weight accumulation speed.

Our remaining task is to show that ϑ′ = 0.
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Suppose the argument is not true, then ϑ′ > ϕ̃(τ). In the first step, we are going to show

that

λ̃∗(ϑ′; τ) ≥ λ̃(ϑ′).

Suppose on the contrary, it is not true. Then at first, we have that λ̃∗(ϑ′; τ) < τ(0) + τ(1).

Then, let us, at first, consider the case in which ϑ′ ≥ T (q̃P ; P̃). The continuation payoff

of the agent at time ϑ′ is given by

Ũϑ′(λ̃, τ) =


ρ

∫ ∞
ϑ′

e−ρ(s−ϑ′)[λ̃(s)− λ̃(ϑ′)]ds+

∫
p∈(p̃t,q̃P ]

e−ρ[T (p;P̃)−ϑ′]m(p)τ(p)dp

−c
∫ T (q̃R,P̃)

ϑ′
e−ρ(s−ϑ′)

[
1− λ̃(s)−

∫
p∈[q̃P ,p̃s]

τ(p)dp

]
ds


1− λ̃(ϑ′)−

∫
p∈[q̃P ,p̃ϑ′ ]

τ(p)dp

≤


ρ

∫ ∞
ϑ′

e−ρ(s−ϑ′)[λ̃∗(t; τ)− λ̃(ϑ′)]ds+

∫
p∈(p̃t,q̃P ]

e−ρ[T (p;P̃)−ϑ′]m(p)τ(p)dp

−c
∫ T (q̃R,P̃)

ϑ′
e−ρ(s−ϑ′)

[
1− λ̃∗(ϑ′; τ)−

∫
p∈[q̃P ,p̃s]

τ(p)dp

]
ds


1− λ̃(ϑ′)−

∫
p∈[q̃P ,p̃ϑ′ ]

τ(p)dp

<


ρ

∫ ∞
ϑ′

e−ρ(s−ϑ′)[λ̃∗(t; τ)− λ̃∗(ϑ′; τ)]ds+

∫
p∈(p̃t,q̃P ]

e−ρ[T (p;P̃)−ϑ′]m(p)τ(p)dp

−c
∫ T (q̃R,P̃)

ϑ′
e−ρ(s−ϑ′)

[
1− λ̃∗(ϑ′; τ)−

∫
p∈[q̃P ,p̃s]

τ(p)dp

]
ds


1− λ̃(ϑ′)−

∫
p∈[q̃P ,p̃ϑ′ ]

τ(p)dp

=

∫
p∈(p̃ϑ′ ,q̃

R]
γ̃(p)η̃(p)

q̃ϑ′(η̃(p),T (q̃P ;P̃))
e−λψ[ϑ′−T (q̃P ;P̃)]m

(
q̃ϑ′
(
η̃(p), T (q̃P ; P̃)

))
dp

1− λ̃(ϑ′)−
∫
p∈[q̃P ,p̃ϑ′ ]

τ(p)dp

=

∫
p∈(p̃ϑ′ ,q̃

R]
γ̃(p)η̃(p)

q̃ϑ′(η̃(p),T (q̃P ;P̃))
e−λψ[ϑ′−T (q̃P ;P̃)]q̃ϑ′

(
η̃(p), T (q̃P ; P̃)

)
dp

1− λ̃(ϑ′)−
∫
p∈[q̃P ,p̃ϑ′ ]

τ(p)dp

=
p0 − τ̃ ∗ϑ′(1; τ)−

∫
p∈[q̃P ,p̃ϑ′ ]

τ(p)pdp

1− λ̃(ϑ′)−
∫
p∈[q̃P ,p̃ϑ′ ]

τ(p)dp
≤
p0 − τ̃ πϑ′(1)−

∫
p∈[q̃P ,p̃ϑ′ ]

τ(p)pdp

1− λ̃(ϑ′)−
∫
p∈[q̃P ,p̃ϑ′ ]

τ(p)dp
= m(α(t; π))

The first inequality follows from the definition of ϑ′, which implies that λ̃(t) ≤ λ∗(t; τ) for

any t > ϑ′. The second inequality (the only strict inequality) follows from the assump-

tion that λ̃(ϑ′) > λ̃∗(ϑ′; τ). The second equality follows from the following three facts. At

first, the numerator of the term at the third line of the equation above is exactly the un-

conditional expected payoff to the agent if he keeps funding research until ϑ′. Secondly,

at time t, the belief martingale τ̃ ∗(·; τ) assigns probability γ̃(p)η̃(p)

q̃ϑ′(η̃(p),T (q̃P ;P̃))
e−λψ[ϑ′−T (q̃P ;P̃)]
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on belief q̃ϑ′
(
η̃(p), T (q̃P ; P̃)

)
. Finally, by the definition of margin belief process, the

agent’s continuation payoff upon receiving message with belief q̃ϑ′
(
η̃(p), T (q̃P ; P̃)

)
is

given by m
(
q̃ϑ′
(
η̃(p), T (q̃P ; P̃)

))
. The forth equality follows from Bayesian plausibility

constraint. The last inequality follows from the fact that τ̃ ∗ϑ′(1; τ) is always consistent

with the one under full information disclosure, which reaches the upper bound of prob-

ability on belief 1 given stopping belief distribution τ . The last equality follows from

the definition of α(t; π). Since the agent’s continuation payoff at time ϑ′, if he chooses

to fund research, is strictly lower than the one if he chooses to cut research funding

and make decision immediately, it is not incentive compatible for the dynamic disclo-

sure policy (π,M) to implement the stopping belief distribution τ , which then leads to

contradiction.

Secondly, let us consider the case where ϑ′ < T (q̃P ; P̃). The proof of the contradiction is

similar and therefore ignored. All in all, it can not be true that λ̃(ϑ′) > λ̃∗(ϑ′; τ) otherwise

the stopping belief distribution τ can not be implemented.

Finally, let us consider the case in which both λ̃(ϑ′) ≤ λ̃∗(ϑ′; τ) and ϑ′ > 0. The proof of

contraction is exactly the same as the one in the proof of Lemma 13 and we therefore

ignore it. Accordingly, we conclude that ϑ′ = 0. �

We then show that for any direct and responsive dynamic disclosure policy (π,M), there

always exists some t̃ ∈ T such that q̃T (q̃P ;P̃)(p̃t̃, t̃) = η̃′(τπ). The proof is the similar to that

of Corollary 4 and therefore ignored.

Finally, given any transition time t̃ ∈ T, the optimal stopping belief distribution τ is

determined through concavifying the function Ṽ (·) at belief q̃T (q̃P ;P̃)(p̃t̃, t̃) within interval

[q̃P , η̃(q̃R)].

WEI ZHAO, HEC PARIS AND GREGHEC-CNRS, 1 RUE DE LA LIBÉRATION, 78351 JOUY-EN-JOSAS,
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