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Abstract

We study the problem of designing efficient network sequentially. In each period, the planner

connects two unlinked agents in the network formed in previous period, then the agents play a

game with local complementarity under the newly formed network. The planner benefits from

the entire discounted stream of equilibrium welfare. We show that, forming a nested split graph

in each period is an optimal strategy for the planner for any specific values of discount factors.

Moreover, when the planner heavily discounts future welfare, the optimal strategy induces a

quasi-complete graph in each period regardless of the strength of complementary effect. Our

paper therefore provides a micro-foundation for quasi-complete network since it is formed under

greedy algorithm. We also discuss the robustness of these results under non-linear best response

and heterogeneous agents.

JEL Classification: D85; C72.

Keywords: Katz-Bonacich centrality; Network formation; Efficiency; Nested split graph; Quasi-

complete graph; Greedy algorithm.

1 Introduction

Structure of interactions among economic subjects, represented as a network, crucially determines

economic behavior as well as individual’s well-being.1 Since network structure affects economic

consequences, it is crucial to know which network induces the best outcome. To be concrete,

consider the infrastructure network, such as highways and railroads, connecting city nodes. A

vast empirical studies highlighted the irreplaceable contribution of infrastructure network on the
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†Department of Economics and Decision Sciences, HEC Paris, France. Email : wei.zhao1@hec.edu
‡Department of Economics, National University of Singapore, Singapore. Email : zhoujj03001@gmail.com
1See, for example Calvó-Armengol et al. (2009) on pupil school performance; David and Dina (2004) on brand

choice, Bramoullé and Kranton (2007); Allouch (2017) on public goods provision. For recent surveys, see Bramoullé
et al. (2016); Jackson et al. (2017); Elliott et al. (2019).
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performance of cities.2 A natural problem for the government is to design routes to maximize

performances of cities subject to limited construction budget. This network design problem has

two features. First, the network may be formed sequentially due to lack of organizational resource:

roads can not be built simultaneously due to limited facilities and labors; Second, the government

assigns different weights over the flow of welfare at each period. For instance, myopic ruling governor

only cares about performances in his official career, and does not value the benefit of the project

after leaving office.

To address this network design problem, we examine a dynamic model of network formation.

In each period during network formation process, multiple agents and a single social planner play a

two-stage game. In the first stage, the planner connects two unlinked agents in the network formed

in the last period. In the second stage, the agents play a game introduced by Ballester et al. (2006)

under the newly formed network. The social planner behaves in a farsighted manner and aims at

maximizing the discounted sum of social welfare at each period.

Our model allows for various discount factors corresponding to different formation periods.

This helps us study the formed network given different levels of farsightedness for the planner.

Specifically, we say that the social planner is farsighted if she only cares about the social welfare

under the network formed in the last period. If the planner heavily discounts the social welfare in

future periods and in convergence, the planner only cares about the social welfare at the current

period, then we say that the planner is myopic.

Our main results are in two folds. First, given any discount factor profile for the planner, the

formed network will be nested split graph (NSG) at each period. This result shows that NSG is

a robust prediction even if the network is formed sequentially and the planner may have different

levels of farsightedness. We further show that, this result still holds under convex best response.

Second, we show that the formed network is quasi-complete (QC) if the planner is myopic. This

result offers a micro-foundation for QC network since it is formed under greedy algorithm.

As immediate corollaries of the main results, we first refine the prediction of globally efficient

network, drawn by previous literature, by excluding one subclass of NSGs. Second, we also provide

a sufficient condition under which greedy algorithm leads to global optimum.

We discussed the robustness of our main results. First, we can extend our results to the

scenario where the social planner’s aims at maximizing aggregate efforts. Our results are still true

if the social planner strategically picks an agent, who then links to a new neighbour to maximize

his current period utility. Moreover, the dynamic model of formation also induces an NSG in each

period when the agents have different intrinsic marginal utilities.

A vast of literature analyze network formation problem from different perspectives. Many early

works focus on the stability and efficiency of networks given the outcomes of individuals’ interactions

(for example Jackson and Wolinsky 1996, Jackson and Watts 2002, Dutta and Mutuswami 1997 and

Bala and Goyal 2000). The follow ups can be generally categorized in two main classes: 1. action

2For example, Duranton et al. (2014) estimate the effect of highways on the city exports. Banerjee et al. (2020)
show the positive effect of transportation network on per capital GDP levels across sectors. Atack et al. (2010)
demonstrate the positive effects of railroad on urbanization and population growth in the US.

2



choices endogenously determined by network games, including strategic substitution (Galeotti and

Goyal 2010, Billand et al. 2015 and van Leeuwen et al. 2019) and strategic complementarity (Belhaj

et al. 2016, Baetz 2015, Hiller 2017 and Li 2020); 2. incorporating dynamics into the formation

process (Watts 2001, Dutta et al. 2005 and Song and van der Schaar 2020). Combining these two

strands, this paper studies dynamic network formation with endogenous choice of actions. One

closely related work is König et al. (2014) where, at each period, a randomly selected agent builds

up a new link or eliminate an existing link to maximize his equilibrium payoff at the current period

(i.e. being myopic). There are two differences between our paper and theirs. First, we assume that

it is the social planner who builds up a new link in each period to maximize social welfare. Second,

we allow for different degree of farsightedness for the social planner.

We use the seminal work of Ballester et al. (2006) to model (local) strategic complementarities

among agents. A central feature of this model is that the agent’s equilibrium action and utility

are proportional to the Katz-Bonacich centrality and square of this centrality respectively. This

framework was later found to have broad applications for network economics such as price discrimi-

nation (Bloch and Quérou 2013), collaboration among firms (König et al. 2019), geographical space

(Helsley and Zenou 2014).

In static setting, Belhaj et al. (2016) study optimal networks in which the agents play the

same complementary network game. They show that, given a fixed number of links, the optimal

network which maximizes both social welfare and aggregate effort is nested split graph (NSG). Li

(2020) generalizes this result by allowing for non-linear best response, but he studies the optimal

weighted and directed networks. Departing from these works focusing on global efficiency, this

paper presents a dynamic formation model which degenerates to (global) efficient problem when

the social planner is farsighted. In particular, our results contribute to Belhaj et al. (2016) in three

dimensions. First, we show that one subclass of NSGs are strictly dominated. Second, we show that

NSG is a robust prediction of formed even if the network is formed sequentially and the planner

has different levels of farsightedness. Third, we extend this result to convex best response function.

Besides, we also give a counter-example to show that the link reallocation approach developed by

Belhaj et al. (2016) does not apply to the case of concave best response function.

The remainder of this paper is organized as follows. Section 2 introduces the framework. We

present our main results in Section 3 and discuss the robustness of our results in Section 4. Section

5 concludes. To facilitate reading, all the proofs are relegated to Appendix.

2 The Model

In this section, we introduce a dynamic model of network formation with the objective of equilibrium

welfare maximization. Each formation period can be viewed as a two-stage game played by a social

planner and a set of agents. In the first stage, the social planner connects two unlinked agents in the

network formed in previous periods. In the second stage, all agents play a network game following

Ballester et al. (2006) with local complementarities. The optimal link chosen by the social planner

in each period is set to maximize the discounted sum of entire stream of equilibrium welfare.
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2.1 The network game

The network formed by the set N = {1, 2, ..., n} of agents is represented by an adjacency matrix

G = (gij)n×n. Assume gij = gji ∈ {0, 1} and gii = 0 for all i ∈ N . We use notation ij ∈ G to

indicate that agents i and j are connected and ij /∈ G otherwise. Each agent i ∈ N chooses an

effort ai ∈ R+, and let a ∈ Rn+ be the profile of agent efforts. Given the network G, and effort

profile a, agent i’s payoff is given as follows:

ui (a,G) = ai −
1

2
a2
i + φ

∑
j∈N

gijaiaj . (1)

This specific utility form follows from Ballester et al. (2006), where ai and 1
2a

2
i denote intrinsic

utility and cost of effort respectively, and the last term φ
∑
j∈N

gijaiaj reflects network externalities.

The scalar parameter φ controls the strength of network effect. We assume φ > 0 so the game

exhibits strategic complementarity. We use Γ (G) to denote the network game represented above.

Denote by λmax (G) the largest eigenvalue of matrix G. As shown in Ballester et al. (2006), if

0 < φ < 1
λmax(G) , Γ (G) has a unique Nash equilibrium given by

a∗ (G) = (I − φG)−1 1,

where I is the identity matrix and 1 = (1, 1, ..., 1)′ is the vector of 1s (with suitable dimension).

That is, each agent’s equilibrium effort coincides with the well-known measure of centralities in

the network – (unweighted) Katz-Bonacich centrality, which summarizes the total number of paths

starting from this node with length discount φ in the network.3 Therefore, the aggregate equilibrium

efforts

a∗ (G) =
∑
i∈N

a∗i (G) =
∑
k=0

φk1′Gk1. (2)

Moreover, the equilibrium welfare of game Γ (G) is given by

u∗ (G) =
∑
i∈N

u∗i (G) ,

where agent i’s utility at equilibrium u∗i (G) = 1
2 (a∗i (G))2 .4 The equilibrium welfare can be rewrit-

3The path counting explanation of Katz-Bonacich centrality follows from the following identity of the Leontief
inverse matrix:

(I − φG)−1 = I + φG + φ2G2 + ...

4See Ballester et al. (2006) for details.
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ten as weighted sum of aggregate paths with length discount:

u∗ (G) =
1

2

∑
k=0

(k + 1)φk1′Gk1.5 (3)

Such an elegant relationship between equilibrium outcomes and aggregate paths in the network is

the starting point of our analysis.

2.2 The network formation process

The network is designed by the social planner over T periods (indexed by t = 1, ..., T , where T ≤
n(n−1)

2 ). At each period t, the game is divided into two stages: in the first stage, the social planner

intervenes network G (t− 1) by adding a new link between two unconnected agents ij /∈ G (t− 1);

then the newly formed network becomes G (t) = G (t− 1) + Eij , where Eij denotes the matrix

with 1 on (i, j) and (j, i) entries, 0 on all the other entries; in the second stage, the agents play

network game Γ (G (t)) and choose equilibrium effort level a∗ (G (t)). The social planner benefits

from social welfare at the end of period.

Before proceeding, we impose the following assumptions.

Assumption 1. The network formation process starts with empty network, i.e., G (0) = 0, where

0 is the matrix with 0s. Thus, the index t in G (t) also indicates the total number of links in G (t).

Assumption 2. The strength of network effect φ is smaller than 1
λmax(G(T )) to ensure the unique-

ness of Nash equilibrium at each period. In particular, by Perron-Frobenius theorem λmax (G (T )) ≤
max
i∈N

{∑
j gij

}
, and therefore Assumption 2 holds when φ (n− 1) < 1.

We say network Ĝ succeeds network G if Ĝ can be obtained by building up a new link from

G.

Definition 1. For any two networks Ĝ and G, Ĝ is said to succeed G, if there exists a pair of agents

{i, j} such that ij /∈ G and Ĝ = G+ Eij. Let S (G) ≡
{
Ĝ|Ĝ = G+ Eij for some ij /∈ G

}
denote the set of networks which succeeds G.

A strategy of the social planner, s, is a sequence of successive networks (G (1) , ...,G (T )),

which specifies network G (t) in period t. Denote the set of strategies by

S ≡ {(G (1) , ...,G (T )) |G (t) ∈ S (G (t− 1)) , ∀t = 1, ..., T} .

Given a strategy of planner s = (G (t))Tt=1 ∈ S, the planner’s payoff is determined by entire stream

5More specifically, we have

u∗ (G) =
1

2
1′ (I − φG)−1 (I − φG)−1 1 =

1

2
1′
(
I + φG+ φ2G2 + ...

)2
1 =

1

2
1′
(∑
k=0

(k + 1)φkGk

)
1.
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of equilibrium welfare::

vδ (s) =

T∑
t=1

δtu
∗ (G (t)) ,

where δ = (δt)
T
t=1 is the profile of discount factors in which δt ∈ [0, 1] is the discount factor of

period t. The network design problem is then described as

max
s∈S

vδ (s) . (4)

The profile of discount factors δ = (δt)
T
t=1 describes various levels of social planner’s farsight-

edness. In particular, for some ε > 0, when the discount factor profile is (δt)
T
t=1 = (εt)Tt=1, then

the future benefits are more heavily discounted as ε decreases. Therefore, the social planner is

more myopic when ε decreases. We leave the formal discussion of myopia in Section 3.2. Here, we

formally define far-sightedness.

Definition 2. The social planner is far-sighted if

δt =

{
0 if 1 ≤ t ≤ T − 1

1 if t = T

When the planner is far-sighted, then Problem (4) can be simplified as designing an efficient

network with total number of T links, which can be formulated as

max
G s.t. 1′G1=2T

u∗ (G) . (5)

This network design problem has been studied by Belhaj et al. (2016).

2.3 Notations

We end this section by introducing some special network structures that will play an essential role

in following analysis. Denote Ni (G) = {j : gij = 1} the set of i’s neighbors in network G.

Definition 3. A network G is called a nested split graph (NSG) if for each i 6= j, either Ni (G) \ {j} ⊆
Nj (G) \ {i} or Nj (G) \ {i} ⊆ Ni (G) \ {j}.

For the convention of our proof, we introduce Definition 3 among several equivalent definitions

of NSG. For any positive integer k, we use G (k) to denote the set of networks with k links, and

NSG (k) to denote the set of NSGs with k links. NSG is a large family of networks including various

network structures. Figure 1 presents NSG (8) when the network is formed by n = 7 agents.

Definition 4. A network G ∈ NSG (t) is a quasi-complete graph, denoted by QC (t) if it contains

a complete subgraph formed by p nodes with p(p−1)
2 ≤ t < p(p+1)

2 , and the remaining t− p(p−t)
2 links

are set between one other node and nodes in the complete subgraph.
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Figure 1: Nested split graphs NSG (8)

Figure 2: Quasi-complete networks.

Quasi-complete graph is a subclass of NSGs. Given the total number of links, quasi-complete

graph has the largest possible complete subgraph.6 Figure 2 presents quasi-complete graphs with

5 nodes and various number of links. It is worth noting that, given a fixed number of links, a

quasi-complete graph is unique up to permutation. Figure 2 also illustrates a dynamic network

formation process with 10 periods.

Definition 5. A network G ∈ NSG (t) is a quasi-star graph, denoted by QS (t), if it has a set of

p central nodes with n − 1 links, and the remaining t − p (n− 1) links are set so as to construct

another central node.

Quasi-star is another prominent subclass of NSGs which is also unique up to permutation fixing

the total number of links. Quasi-star has as many nodes with degree n − 1 as possible. Figure 3

illustrates quasi-star graphs with 5 nodes and various number of links. In particular, QS (t) is the

graph complement of QC (t′) where t′ = n(n−1)
2 − t. That is, the sum of the two adjacency matrices

QS (t) +QC (t′) is equal to the adjacency matrix of complete graph after permutation. Moreover,

QS (t) = QC (t) if and only if t ∈
{

0, 1, 2, n(n−1)
2 − 2, n(n−1)

2 − 1, n(n−1)
2

}
.7

6A quasi-complete graph with t links, where p(p−1)
2
≤ t < p(p+1)

2
, contains a unique maximal, and thus maximum,

clique of size p.
7The necessity is straightforward. Suppose there exists an other t such that QS (t) = QC (t). Assume there are
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Figure 3: Quasi-star networks.

3 Optimal networks

We present our main results in this section. First, we show that, under the prescribed formation

process, forming an NSG is optimal for the social planner at each period. This result is shown

to be robust against convex best response. Then, when the social planner is myopic, his optimal

strategy induces a quasi-complete graph in each period. Finally, we compare the myopic and global

optimum and provide a sufficient condition to ensure that they are identical.

3.1 The optimal formation process

The following Lemma is crucial for our analysis.

Lemma 1. Given a network G and two distinct nodes i, j such that Nj (G) \ {i} 6= Ni (G) \ {j}.
Defined by L = {l ∈ N\ {i, j} |gil = 0 and gjl = 1} the set of j’s neighbors who are not neighbors of

i, and Ĝ = G+
∑
l∈L
Eil −

∑
l∈L
Ejl is the network obtained by neighborhood switch from j to i. Then,

we have

1′Gk1 < 1′Ĝ
k
1 for any integer k ≥ 2.

The link reallocation, which switches all j’s neighbors (but not i’s) to i, does not alter the total

number of links. Thus, the aggregate paths of length 1 does not change after the link reallocation.

Lemma 1 shows that, such link reallocation increases aggregate paths of length larger than 1, and

therefore, both equilibrium activities and welfare raise. Belhaj et al. (2016)’s Lemma 1 argues

that such reallocation increases welfare if a∗i (G) ≥ a∗j (G).8 Our Lemma 1 generalizes Belhaj

et al. (2016)’s Lemma 1 in two directions. First, for any objective function which is monotone in

aggregate paths of any length, such link reallocation leads to an improvement. For instance, besides

k isolated agents in QC (t). Then we have (n−k−1)(n−k−2)
2

+ 1 ≤ t ≤ (n−k)(n−k−1)
2

. If there are k isolated agents in

QS (t), we have t = n− k − 1. It is easy to derive the contradiction when t ∈
(

2, n(n−1)
2
− 2
)

.
8Belhaj et al. (2016)’s Lemma 1 states that, in our notations, consider a network G and two distinct nodes i, j
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equilibrium activities and welfare, aggregate diffusion centrality, proposed by Banerjee et al. (2013),

also increases. Second, we argue that link reallocation from agent with lower equilibrium effort to

agent with higher effort will also improve the social welfare.

Theorem 1. Given any profile of discount factors δ = (δt)
T
t=1 ∈ [0, 1]T , there exists a solution s∗ =

(G∗ (t))Tt=1 of Problem (4) such that G∗ (t) ∈ NSG (t) for any t ≤ T . Moreover, if s∗ = (G∗ (t))Tt=1

is a solution of Problem (4), then G∗ (t) ∈ NSG (t) for any t such that δt ∈ (0, 1].

We prove this theorem by showing that, for any strategy s = (G(t))Tt=1 such that G(t) /∈
NSG(t) for some 1 ≤ t ≤ T , there exists a weakly dominant strategy ŝ = (G(t))Tt=1 such that

ˆG(t) ∈ NSG(t). The proof is constructive based on Algorithm 1.

Algorithm 1. For any strategy s = (G(t))Tt=1, define algorithm as follows,

Step 1: Check whether G(t) ∈ NSG(t) for all 1 ≤ t ≤ T ,

• If it is true, then the algorithm stops.

• If it is wrong, then

– Step 2: Find t̃ such that G(t) ∈ NSG(t), ∀t ≤ t̃− 1 and G(t̃) /∈ NSG(t̃). Find the pair

of nodes i, j ∈ N which violates the nestedness at t̃ (suppose i’s degree is larger than

j’s).

– Step 3: Construct another strategy ŝ = (Ĝ(t))Tt=1 according to the following rules,

∗ If t < t̃, let Ĝ(t) = G(t).

∗ If t ≥ t̃ and G(t+ 1) = G(t) +Ejl for some l /∈ {i, j}, then

· If ĝil(t) = 0, let Ĝ(t+ 1) = Ĝ(t) +Eil (e.g., t = 4, 5 in Figure 4);

· If ĝil(t) = 1, let Ĝ(t+ 1) = Ĝ(t) +Ejl.

∗ If t ≥ t̃ and G(t+ 1) = G(t) +Eil for some l /∈ {i, j}, then

· If ĝil(t) = 0, let Ĝ(t+ 1) = Ĝ(t) +Eil;

· If ĝil(t) = 1, let Ĝ(t+ 1) = Ĝ(t) +Ejl (e.g., t = 7 in Figure 4).

∗ If t ≥ t̃ and G(t + 1) = G(t) + Elk for some l, k /∈ {i, j} or (l.k) = (i, j), then let

Ĝ(t+ 1) = Ĝ(t) +Elk (e.g., t = 6 in Figure 4).

– Step 4: Set s = ŝ and return to Step 1.

We use the following six-node example (Figure 4) to illustrate the idea of the algorithm.

Suppose a strategy s = (G (t))8
t=1 induces non-NSGs at some periods. For instance, t̃ is the first

such that a∗i (G) ≥ a∗j (G). Then, for the set of nodes L = {l ∈ N\ {i, j} |gil = 0 and gij = 1}, we have

u∗ (G) < u∗
(
G+

∑
l∈L

Eil −
∑
l∈L

Ejl

)
.

However, the network induced by switching all j’s neighbors to i and the one by switching all i’s neighbors to j are
isomorphic. Therefore, the requirement of a∗i (G) ≥ a∗j (G) in Belhaj et al. (2016)’s Lemma 1 is redundant.
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time that s forms a non-NSG in which the neighbors of j (lower degree node) are not nested by

that of i (higher degree node). Then we construct another strategy ŝ =
(
Ĝ (t)

)8

t=1
based on

Step 3 of Algorithm 1. It is easy to verify that the newly constructed strategy ŝ is plausible, i.e.,

Ĝ(t + 1) ∈ S
(
Ĝ(t)

)
, ∀1 ≤ t ≤ 6. Furthermore, for each t, there exists a set of nodes L(t) :=

{l ∈ N : ĝil (t) > gil (t)} = {l ∈ N : ĝjl (t) > gjl (t)} such that Ĝ (t) = G (t) −
∑

l∈L(t)

Ejl +
∑

l∈L(t)

Eil.

In Figure 4, the set L(t) of nodes is shown by dotted circles. Therefore, Lemma 1 implies that the

original strategy s is weakly dominated by ŝ. Note that ŝ induces NSGs for any t ≤ 4. However, it

does not induce an NSG at t = 6. We then iterate Step 2 and Step 3 to construct a new strategy

which forms NSGs for any t ≤ 6. Note that at every iteration, the newly constructed strategy

forms NSGs for at least one more period, i.e. for any t ≤ t̃. Therefore the algorithm terminates in

at most T − t̃ iterations. The terminal strategy induces NSGs at each period and weakly dominates

the original one.

Figure 4: An illustrative example for the proof of Theorem 1

Theorem 1 demonstrates the importance of NSGs in the network formation process. Building

up a link to form an NSG is an optimal strategy for the social planner regardless of the level of

farsightedness. When vδ (s) = u∗ (G (T )), Theorem 1 degenerates to Belhaj et al. (2016) which

states that given a total number of T links, the globally efficient network is an NSG.

It is worth noting that, the optimal strategy s∗ crucially depends on the strength of network

effect: different network effect φ may result in different optimal strategies, even though the profile

of discount factors (δt)
T
t=1 remains the same. Example 1 highlights impact of strength of network

effect on the network formation process.

Example 1. Consider the planner’s problem (4). Suppose n = 7, T = 8 and the planner is far-

sighted, i.e. vδ (s) = u∗ (G (T )). According to Theorem 1, the formed network must be one of the

four NSGs listed in Figure 1. Table 1 lists equilibrium welfare induced by these four NSGs with

various values of φ
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Comparison welfare with different φ

Strength of network effect QC(8) QS(8) Ḡ(8) Ĝ(8)

φ = 0.01 3.6685 3.6687* 3.6684 3.6681

φ = 0.1 6.5104* 6.4047 6.4259 6.41

φ = 0.2 22.6716* 18.0464 19.5074 19.9595

When the strength of network effect is sufficient small, i.e. φ = 0.01, the globally efficient

network is quasi-star. However, the efficient network becomes quasi-complete when φ is large, i.e.,

φ = 0.1 or 0.2. Therefore, the planner’s optimal strategy differs as the strength φ of network effect

varies.

3.1.1 Convex best response

Theorem 1 is also robust against convex best response. Suppose agent i’s payoff is given by

ui (a;G) = ai + ψ(
∑
j∈N

gijaj)ai −
1

2
a2
i , (6)

where function ψ(·) is weakly convex and increasing. We can then derive agent i’s best response

function as

α∗i (a−i;G) = 1 + ψ(
∑
j∈N

gijaj).

Moreover, we assume ψ′(·) < 1
λmax(G) to ensure that the network game has a unique Nash equi-

librium. Let a∗(G) ≡ (a∗i (G))i∈N be the Nash equilibrium, then agent i’s welfare also equals to

half of the square of his own equilibrium effort, i.e. u∗i (G) = 1
2(a∗i (G))2. Lemma 2 is a non-linear

extension of Lemma 1.

Lemma 2. Suppose each agent i’s utility is given by (6). Consider two distinct agents i, j such

that Nj (G) \ {i} 6= Ni (G) \ {j}. Let L = {l ∈ N\ {i, j} |gil = 0 and gjl = 1} and Ĝ = G+
∑
l∈L
Eil−∑

l∈L
Ejl. Then we have

a∗ (G) < a∗
(
Ĝ
)

, and

u∗ (G) < u∗
(
Ĝ
)

.

The link reallocation,
∑
l∈L
Eil −

∑
l∈L
Ejl, increases the gap between agent i’s and j’s equilibrium

efforts. The assumption of convex best response function ensures that the increment of agent i’s

equilibrium efforts exceeds the decreasing of agent j’s efforts, due to the reallocation. Denote

k ∈ N as one of nodes who is linked to both node i and j. The convexity of best response function

guarantees that the equilibrium effort of node k increases post reallocation.
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Based on Lemma 2, we can then adopt Algorithm 1 to find a dominant strategy over any

strategy which induces non-NSG at some periods. Therefore, Theorem 1 still holds with convex

best response.

Proposition 1. When each agent i’s utility is given by (6), all the statements in Theorem 1 still

hold.

The following example illustrates that Lemma 2 fails when ψ (·) is concave.

Example 2. Suppose each agent i’s utility is given by (6), where ψ(x) = (0.1x)
1
2 is concave.9

Then, the best response of agent i,

α∗i (a−i;G) = 1 +

0.1
∑
j∈N

gijaj

 1
2

.

Consider network G formed by 101 nodes. In the network, nodes i, j are disconnected and there

is only one node, l, belongs to j’s neighbors but not i’s. All the other nodes connect with both i

and j. In particular, there is a clique of size 5 in network G. Shifting link jl to il increases i’s

effort and meanwhile decreases j’s. Due to concavity of the best response function, the increment

of i’s effort is less than the decreasing of j. Specifically, i’s equilibrium effort increases from 2.0998

in network G to 2.1647 in G+ Eil−Ejl (net increase 0.0649) while j decreases from 2.0998 to

2.0313 (net decrease 0.0685). Therefore, the efforts of all nodes connecting with both i and j are

decreasing. Such decreasing is amplified through dense intra-connection of these nodes (the clique):

the equilibrium effort of agents in the clique decreases from 2.1273 to 2.1271 and that of the 92 agents

decreases from 1.6480 to 1.6478. The two nodes only connecting with i will increases their effort

corresponding to the link shifting (a∗l (G) = 1.4582 and a∗l

(
Ĝ
)

= 1.4653), while the total decreasing

of efforts from other nodes covers the effort increments of these two nodes. As a result, the link

shifting decreases aggregate equilibrium activities. Figure 2 summarizes the numerical results.

G v.s. Ĝ

G Ĝ

Aggregate activities 169.3722* 169.3570

Welfare 285.5736* 285.5231

Example 2 illustrates the failure of Lemma 2 when ψ (·) is concave. It implies that the link

re-allocation approach developed by Belhaj et al. (2016) does not hold when best response function

is concave. However, it is not sufficient to conclude that Theorem 1 does not hold. The question

of designing efficient discrete network under concave best response is an open question and left for

future research.

9This utility form encounters the failure of sufficient condition of unique equilibrium: ψ′(·) < 1
λmax(G)

. We
have verified that decreasing the strength of network effect from 0.1 to 0.0001, which guarantees the uniqueness of
equilibrium, does not change the comparison results between G and Ĝ.
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Figure 5: Lemma 2 fails when the best response is concave

3.2 Myopic optimum

Example 1 highlights the impact of the strength of network effect on the network formation process.

However, the discount factor profiles also play an important role in determining the optimal strategy.

In this subsection, we study the optimal strategy when the social planner becomes sufficiently

myopic.

The greedy algorithm is commonly adopted to pin down the solution to Problem (5). We first

consider its underlying strategy.

Definition 6. A strategy s̊ =
(
G̊ (t)

)T
t=1

is greedy strategy of Problem (4) if

G̊ (t) ∈ arg max
G∈S(G̊(t−1))

u∗ (G) for any t.

The greedy strategy builds up a link between an unlinked pair in the network formed at the

last period to maximize the social welfare at the current period. The following lemma shows that

the greedy strategy is optimal for a sufficiently myopic social planner.

Lemma 3. There exists an ε̄ > 0 such that when δt > 0 and δt+1

δt
< ε̄ for any t ≤ T , then the

solution of Problem (4) is greedy strategy, i.e., s∗ = s̊ if δt > 0 and δt+1

δt
< ε̄,∀t ≤ T .

Lemma 3 is intuitive. Whenever the planner heavily discounts future payoffs, then at each

period, she will choose the strategy to maximize her payoff at the current period. We therefore

define that a social planner is myopic if her discount factor profile satisfies δt > 0 and δt+1

δt
< ε̄ for

any t. Our next results fully characterizes the optimal strategy for a myopic social planner, i.e.,

the greedy strategy.
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Theorem 2. The greedy strategy induces a quasi-complete graph in each period, i.e., G̊ (t) = QC (t)

for any t.

In the proof of Theorem 2, we further discriminate among NSGs. We use mathematical

induction and assume that a quasi-complete network is formed at period t− 1. By Theorem 1, we

restrict our attention to the set of strategies which induce an NSG at period t. There exists at

most two different NSGs succeeding a quasi-complete graph. Figure 6 illustrates building up a link

in a quasi-complete network with 5 agents at t = 5. There are only two ways of forming an NSG,

i.e. quasi-complete network G̊ = G+E34 and the other NSG Ḡ = G+E15.

Figure 6: Two different NSGs succeeding a quasi-complete graph

We then compare these two classes of NSGs through inductively showing that aggregate walks

of length k ≥ 2 of quasi-complete network strictly dominates that of the other NSG. We put this

argument in the following Lemma.

Lemma 4. For any integer k ≥ 2 and t ≥ 0, 1′QC (t+ 1)k 1 > 1′Ḡ (t+ 1)k 1.

Theorem 2 demonstrates that the myopically efficient formation process is unique up to per-

mutation, regardless of the strength of network effect. It provides a micro-foundation for quasi-

complete graphs as they are formed under greedy algorithm. Figure 2 exactly illustrates the dy-

namic formation process in 10 periods when the planner is myopic. Theorem 2, together with

Lemma 3, highlights the role of discount factors on the optimal strategy, i.e. when the social

planner is myopic, the formed network under the optimal strategy will always be quasi-complete

irrespective of the strength of network effect.
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3.2.1 Greedy algorithm and global efficiency

Belhaj et al. (2016) show that, given a fixed number of total links, the globally efficient network is

an NSG. Different strength of network effect corresponds to different NSG as the globally efficient

network. Can each NSG be globally efficient at some strength of network effect? One by-product

of Theorem 2 is to further refine the prediction of globally efficient network. Given a total number

of T links, let Ġ (T ) denote the globally efficient network, i.e., Ġ (T ) ∈ arg max
G∈G(T )

u∗ (G).

Corollary 1. The globally efficient network Ġ (T ) ∈ NSG (T ) \Ḡ (T ).

Theorem 2 implies that, when greedy algorithm does result in global optimum, then the

globally efficient network must be quasi-complete. However, as illustrated by Example 1, the

globally efficient network may not be quasi-complete, and thus, the greedy algorithm fails to reach

global optimum. The next proposition is an immediate corollary of Bernardo M. Ábrego (2009)’s

Theorem 2.8. It shows that the greedy algorithm leads to global optimum when the number of

links is exactly 3 or the strength of network effect is small enough and the number of links is large

enough as well.

Proposition 2. When the number of agents n ≥ 3, then we have that

1. If the total number of links t = 3, then Ġ (t) = QC (t);

2. If the total number of links t ∈ (3, n
2−3n

4 ), then there exists φ̂ > 0 such that for any φ ∈ (0, φ̂),

then Ġ (t) = QS (t);

3. If the total number of links t ∈
(
n2+n

4 , n(n−1)
2

]
, then there exists φ̄ > 0 such that for any

φ ∈ (0, φ̄), then Ġ (t) = QC (t), i.e. Greedy algorithm leads to global optimum.

Our next example illustrates Proposition 2 by comparing quasi-star and quasi-complete net-

work with various number of links.

Example 3. Suppose that there are n = 6 agents and the discount factor is given by φ = 0.1.

If the total number of links is given by t = 3, then quasi-complete network strictly dominates the

quasi-star network in terms of aggregate equilibrium welfare; However if total number of links t is

increased to 4 (which is the unique integer belongs to (3, n
2−3n

4 )), then the welfare induced by quasi-

star network is strictly higher than that of quasi-complete network, which implies the divergence

between globally efficient network and what is led by greedy strategy; Finally, if we increase the

total number of links t to 11 (which is an integer belongs to
(
n2+n

4 , n(n−1)
2

]
), then quasi-complete

network again dominates the quasi-star network. Figure 7 illustrates the net welfare induced by

quasi-complete and quasi-star.

The final remark is that the optimal strategy is not an array of globally efficient networks, i.e.,

s∗ := (G∗(t))1≤t≤T 6= (Ġ(t))1≤t≤T .
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Figure 7: Quasi-complete v.s. Quasi-star: u∗(QC(t))− u∗(QS(t))

The main reason is that the strategy (Ġ(t))1≤t≤T is infeasible or there exists some 1 ≤ t ≤ T − 1

such that Ġ(t+ 1) does NOT succeed Ġ(t). For instance, we show that the myopic social planner

should form quasi-complete network at each period. However, in Example 1, when φ = 0.01, we

have Ġ(8) = QS(8) 6= QC(8). If (Ġ(t))1≤t≤T is feasible, then it must also be optimal, which

contradicts the optimality of greedy strategy.

4 Robustness of results

We end this paper by discussing three changes in the model’s specifications.

Activity concern. Our proof concerning the maximization of welfare naturally covers that of equi-

librium activities since, as shown by equation (2), the activity concern is proportional to aggregate

discounted paths in the network. Lemma 1 implies that forming an NSG in each period induces

a stream of highest equilibrium activities; Lemma 4 demonstrates that QC (t) dominates Ḡ (t) in

terms of equilibrium activities, and therefore the myopically optimal network is quasi-complete.

.

Heterogeneous agents. Suppose the utility function of agent i is

ui (a,G) = θiai −
1

2
a2
i + φ

∑
j∈N

gijaiaj ,

where the intrinsic marginal utilities θ = (θi)i∈N of agents are distinct. Then, structure of network

G and intrinsic marginal utilities θ jointly determine the equilibrium which is given by a∗ (G,θ) =

(I − φG)−1 θ. To analyze the dynamic model of network formation with agent heterogeneity, we

need to modify Lemma 1 as follows:

Lemma 5. Given a network G and two distinct nodes i, j such that θj ≤ θi and Nj (G) ( Ni (G).

16



Then, for the set of nodes L = {l ∈ N\ {i, j} |gil = 0 and gij = 1} we have

1′Gkθ < 1′

(
G+

∑
l∈L
Eil −

∑
l∈L
Ejl

)k
θ for any integer k ≥ 2.

According to Lemma 5, the social planner tends to accumulate the agents with high θ before

connecting the agents with polarized θ. Naturally, the optimal strategy forms networks in which

the neighbors of agent with low θ is nested by that with high θ. As a result, the formed network

is also an NSG in each period. Theorem 1 still holds.

Note that, Theorem 2 fails when agents are heterogeneous: if an agent’s θ is much larger than

others’, then the optimal network formed in period t = n − 1, G∗ (n− 1), is a star network with

the central agent being the high-θ one.

Delegation of link formation. In the description of network formation process, the social planner

builds up links sequentially to maximize his objective (4). We introduce an alternative dynamic

model of network formation in which the social planner strategically picks an agent (rather than

link) and the agent chooses to form a link that maximizes her utility.

Formally, the network is formed over T periods. At each period t, the game is divided

into three stages: in the first stage, the social planner selects an agent i; in the second stage,

agent i connects with a non-neighbor j to maximize her utility, i.e., agent i connects with j ∈
arg max

k, s.t., ik/∈G(t−1)
u∗i (G (t− 1) +Eik); in the last stage, the agents play network game Γ (G (t)),

where G (t) = G (t− 1) +Eik and then the social planner benefits from equilibrium welfare. This

dynamic model of network formation is introduced in the spirit of König et al. (2014) which ana-

lyzes network formation with decentralized concerns. In König et al. (2014)’s model, a randomly

picked agent chooses to form a link that increases her utility the most in each period. Departure

from their model, the agent is strategically picked by the social planner here.

In this model, a strategy of the planner is a sequence of players p = (pt)
T
t=1, where pt denotes

the nominated agent in period t. Any strategy p also induces a sequence of networks (G (t))Tt=1,

where G (t) = G (t− 1) + Eptj and j ∈ arg max
k, s.t., ptk/∈G(t−1)

u∗i (G (t− 1) +Eik). Denote P as the

set of strategies. Then, the network design problem is described as

max
p∈P

T∑
t=1

δtu
∗ (G (t))

s.t. G (t) = G (t− 1) +Eptj , (7)

where j ∈ arg max
k, s.t., ptk/∈G(t−1)

u∗i (G (t− 1) +Eik) .

The following proposition states that this dynamic model of network formation in which the planner

delegates an agent to form a new link is (outcome) equivalent to that in which the planner builds

up new links directly.
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Proposition 3. Given discount factors (δt)
T
t=1, a sequence of networks (G∗ (t))Tt=1 is induced by

the solution of Problem (7) if and only if (G∗ (t))Tt=1 is a solution of Problem (4).

5 Conclusion

This paper has studied a network formation process for linear complementary interaction. We

shown that, starting from empty network, forming an NSG in each period maximizes discounted

sum of equilibrium welfare across all periods. In particular, the myopic optimal strategy of the

planner induces quasi-complete graph in each period. This work complements classical results

focusing on global efficient networks by precluding a subclass of NSG from efficiency. Moreover,

the parity and disparity between myopic and global optima has been illustrated. When the strength

of complementary effect is small and the total number of links is large, both myopically and globally

efficient structure is quasi-complete.

6 Appendix

Proof of Lemma 1: We prove an equivalent statement here: Given a network G and two distinct

nodes i, j such that Nj (G) \ {i} ( Ni (G) \ {j}. Then, for any set of nodes L = {l1, ..., lk} ⊆
N\ {i, j} such that L ∩Ni (G) = ∅ we have

1′

(
G+

∑
l∈L
Eil

)k
1 > 1′

(
G+

∑
l∈L
Ejl

)k
1 for any integer k ≥ 2.

This statement implies Lemma 1 directly.

We use Ĝ and Ǧ to denote G+
∑
l∈L
Eil and G+

∑
l∈L
Ejl respectively. When k = 2, 1′G2 1 =∑

m∈N
e2
m (G), where em (G) = |Nm (G) | is degree of agent m. Apparently, em

(
Ĝ
)

= em
(
Ǧ
)

for any

m /∈ {i, j}. Moreover, ei

(
Ĝ
)
− ei

(
Ǧ
)

= ej

(
Ĝ
)
− ej

(
Ǧ
)

and ei

(
Ĝ
)

+ ei
(
Ǧ
)
> ej

(
Ĝ
)

+ ej
(
Ǧ
)
.

Therefore, we have
∑
m∈N

e2
m

(
Ĝ
)
>
∑
m∈N

e2
m

(
Ǧ
)
.

Denote vector ak =
(
Ĝ
)k

1 and bk =
(
Ǧ
)k

1. We inductively show that akm ≥ bkm for any

m 6= j and aki + akj > b
k
i + bkj .
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Suppose the statement is true for all k′ ≤ k. Then for any m /∈ {i, j},

ak+1
m =

(G+
∑
l∈L
Eil

)k+1

1


m

=

[(
G+

∑
l∈L
Eil

)
ak

]
m

=
∑
p∈N

gmpa
k
p

=
∑

p/∈{i,j}

gmpa
k
p + gmia

k
i + gmja

k
j

Moreover, by aki + akj > bki + bkj , we have aki − b
k
i > bkj− akj . Thus, gmi

(
aki − b

k
i

)
≥

gmj

(
bkj − akj

)
since gmi ≥ gmj and aki − b

k
i > 0. Therefore,

ak+1
m =

∑
p/∈{i,j}

gmpa
k
p + gmia

k
i + gmja

k
j

≥
∑

p/∈{i,j}

gmpb
k
p + gmib

k
i + gmjb

k
j = bk+1

m

for m /∈ {i, j}. Note that, for some node m such that gmi = 1 and gmj = 0, we have ak+1
m > bk+1

m .

Now we compare ak+1
i and bk+1

i ,

ak+1
i − bk+1

i =
∑
p∈N

gipa
k
p +

∑
l∈L
akl −

∑
p∈N

gipb
k
p

≥ gij

(
akj − bkj

)
+
∑
l∈L
akl

= gij

∑
p∈N

gjpa
k−1
p −

∑
p∈N

gjpb
k−1
p −

∑
l∈L
bk−1
l

+
∑
l∈L
akl

≥ gij

(
gij

(
ak−1
i − bk−1

i

)
−
∑
l∈L
bk−1
l

)
+
∑
l∈L
akl

≥
∑
l∈L
akl −

∑
l∈L
bk−1
l

≥
∑
l∈L
akl −

∑
l∈L
bkl ≥ 0.
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Similarly, we have

ak+1
i + ak+1

j =
∑
p∈N

gipa
k
p +

∑
l∈L
akl +

∑
p∈N

gjpa
k
p

= 2
∑

p/∈{i,j}

(gip + gjp)a
k
p +

∑
l∈L
akl + gija

k
j + gija

k
i

> 2
∑

p/∈{i,j}

(gip + gjp) b
k
p +

∑
l∈L
bkl + gijb

k
j + gijb

k
i

= bk+1
i + bk+1

j .

Note that, the strict inequality holds since there exists some node p /∈ {i, j} such that ak+1
p >

bk+1
p . �

Proof of Theorem 1: We prove this result by contradiction. Consider a strategy s̃ =
(
G̃ (t)

)T
t=1

which induces non-NSGs in some period. Let t∗ be the first time that s̃ induces a non-NSG,

i.e., G̃ (t∗) /∈ GNSG (t∗) and G̃ (t) ∈ GNSG (t) for any t < t∗. We can construct another strategy

ŝ =
(
Ĝ (t)

)T
t=1

which induces an NSG at period t∗ and dominates s̃.

Since G̃ (t∗) is not nested split, we can find two agents i, j such that i’s degree is larger

than j but j’s neighbors are not all i’s, i.e., |Ni

(
G̃ (t∗)

)
| > |Nj

(
G̃ (t∗)

)
| while Ni

(
G̃ (t∗)

)
∩

Nj

(
G̃ (t∗)

)
6= Nj

(
G̃ (t∗)

)
.

Construct ŝ =
(
Ĝ (t)

)T
t=1

such that Ĝ (t) = G̃ (t∗) for all t < t∗. At period t ≥ t∗, let Ĝ (t)

be:

1. If G̃ (t+ 1) = G̃ (t) +Ejl for some l /∈ {i, j}, then

(a) If ĝil (t) = 0, let Ĝ (t+ 1) = Ĝ (t) +Eil;

(b) If ĝil (t) = 1, let Ĝ (t+ 1) = Ĝ (t) +Ejl.

2. If G̃ (t+ 1) = G̃ (t) +Eil for some l /∈ {i, j}, then

(a) If ĝil (t) = 0, let Ĝ (t+ 1) = Ĝ (t) +Eil;

(b) If ĝil (t) = 1, let Ĝ (t+ 1) = Ĝ (t) +Ejl.

3. If G̃ (t+ 1) = G̃ (t) +Elk for some l, k /∈ {i, j}, then let Ĝ (t+ 1) = Ĝ (t) +Elk.

First, we show that the newly constructed strategy ŝ is always plausible. Since the link is

always reallocated between (i, l) and (j, l) for some l /∈ {i, j}, g̃lk = ĝl,k for any l, k /∈ {i, j}.
This implies that the third step in the algorithm above always holds. We prove the remaining

argument by contradiction. Now suppose that G̃(t) = G̃(t − 1) + Ejl and ĝil(t − 1) = 1. If

ĝjl(t − 1) = 1, together with g̃jl(t − 1) = 0, then there exists some step t∗ ≤ t′ ≤ t − 2 such that

G̃(t′) = G̃(t′ − 1) + Eil and ĝil(t
′ − 1) = 1. ĝil(t

′ − 1) = 1 and g̃il(t
′ − 1) = 0 together imply

20



that there exists some t∗ ≤ t′′ ≤ t′ − 1 such that G̃(t′′) = G̃(t′′ − 1) + Ejl and ĝil(t
′′ − 1) = 0,

which therefore contradicts to the plausibility of s̃. Finally, suppose that at step t∗ ≤ t ≤ T ,

G̃(t) = G̃(t − 1) + Eil for some l /∈ {i, j}, ĝil(t − 1) = ĝjl(t − 1) = 1. Since g̃il(t − 1) = 0 and

ĝil(t) = 1, then there exists some t∗ ≤ t′ ≤ t−1 such that G̃(t′) = G̃(t′−1)+Ejl and ĝil(t
′−1) = 0.

Combining ĝil(t
′−1) = 0 and g̃jl(t

′−1) = 0, we then have that ĝjl(t
′−1) = 0. However, combining

ĝjl(t − 1) = 1 and ĝjl(t
′ − 1) = 0, one then have that there exists some t′ + 1 ≤ t′′ ≤ t − 1 such

that either G̃(t′′) = G̃(t′′ − 1) +Ejl or G̃(t′′) = G̃(t′′ − 1) +Eil. However, both cases violate the

plausibility of s̃.

Moreover, for each period t, define a set of agents

L = {l ∈ N : ĝil (t) > g̃il (t)} = {l ∈ N : ĝjl (t) > g̃jl (t)} .

Note that, by this construction Ĝ (t) = G̃ (t)−
∑
l∈L
Ejl +

∑
l∈L
Eil. Thus, by Lemma 1, u∗

(
Ĝ (t)

)
>

u∗
(
G̃ (t)

)
for any t. We can then iterate this procedure to produce a weakly better strategy

s∗ = (G∗ (t))Tt=1 until G∗ (t) ∈ GNSG (t) for all t.

Note that, when δt∗ > 0, the constructed strategy ŝ is strictly better than s̃. Therefore,

the optimal strategy s∗ must induce an NSG at period t such that δt > 0. Suppose not. Let

t̄ = min {t|G∗ (t) /∈ NSG (t)} and t
¯
= min {t|G∗ (t) /∈ NSG (t) and δt > 0}. Apparently, t̄ ≤t

¯
.

By Algorithm 1, we can construct ŝ∗ =
(
Ĝ
∗

(t)
)T
t=1

such that Ĝ
∗

(t) ∈ NSG (t) for any t <t
¯

and ŝ∗ induces same payoff with s∗ to the social planner since δt = 0 for t̄ ≤ t <t
¯
. Then,

t
¯
= min

{
t|Ĝ∗ (t) /∈ NSG (t)

}
. By Algorithm 1, we can find another strategy induces strictly higher

payoff than ŝ∗ which contradict with the fact that s∗ is optimal. �

Proof of Lemma 2: Similar with Proof of Lemma 1, we prove an equivalent statement here:

Given a network G and two distinct nodes i, j such that Nj (G) \ {i} ( Ni (G) \ {j}. Then, for

any set of nodes L = {l1, ..., lk} ⊆ N\ {i, j} such that L ∩Ni (G) = ∅ we have

a∗

(
G+

∑
l∈L
Eil

)
> a∗

(
G+

∑
l∈L
Ejl

)
and

u∗

(
G+

∑
l∈L
Eil

)
> u∗

(
G+

∑
l∈L
Ejl

)
.

Define x
(a)
k iteratively as

x
(0)
k = 0; x

(a+1)
k = ψ


∑

k′∈Nk

(
G+

∑
l∈L
Eil

)x(a)
k′

 .
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Similarly, define y
(a)
k iteratively as

y
(0)
k = 0; y

(a+1)
k = ψ


∑

k′∈Nk

(
G+

∑
l∈L
Ejl

)y(a)
k′

 .

We use mathematical induction to show that for all a ≥ 0, the following four arguments hold:

1. x
(a)
k ≥ y

(a)
k , ∀k 6= j.

2. x
(a)
i ≥ y

(a)
j ;

3. x
(a)
i + x

(a)
j ≥ y

(a)
i + y

(a)
j ;

4. x
(a)
k and y

(a)
k is increasing in a for any k.

When a = 0 and 1, the four arguments trivially hold. Assume that these four arguments hold

for any a ≤ a∗ where a∗ ≥ 1.

First, we show that x
(a∗+1)
k ≥ y(a∗+1)

k for any k /∈ {i, j} ∪ L.

x
(a∗+1)
k = ψ

 ∑
k′ /∈{i,j}

gkk′x
(a∗)
k′ + gkix

(a∗)
i + gkjx

(a∗)
j


≥ ψ

 ∑
k′ /∈{i,j}

gkk′y
(a∗)
k′ + gkix

(a∗)
i + gkjx

(a∗)
j


≥ ψ

 ∑
k′ /∈{i,j}

gkk′y
(a∗)
k′ + gkiy

(a∗)
i + gkjy

(a∗)
j

 = y
(a∗+1)
k .

The first inequality follows from the fact that x
(a∗)
k ≥ y

(a∗)
k , ∀k /∈ {i, j}. The second inequality

follows from the that that gki ≥ gkj , x
(a∗)
i ≥ y(a∗)

j and x
(a∗)
i + x

(a∗)
j ≥ y(a∗)

i + y
(a∗)
j .

Note that, for some node k such that gki = 1 and gkj = 0, we have x
(a∗+1)
k > y

(a∗+1)
k .

Second, we show that, for any l ∈ L, x
(a∗+1)
l ≥ y(a∗+1)

l . The inequality holds since

x
(a∗+1)
l = ψ

(∑
k′

glk′x
(a∗)
k′ + x

(a∗)
i

)
≥ ψ

(∑
k′

glk′y
(a∗)
k′ + y

(a∗)
i

)
= y

(a∗+1)
l .
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Third, we show that x
(a∗+1)
i ≥ y(a∗+1)

i . Note that

x
(a∗+1)
i = ψ

gijx(a∗)
j +

∑
k 6=j

gikx
(a∗)
k +

∑
l∈L

x
(a∗)
l

 ,

the inequality trivially hold when gij = 0 since x
(a∗)
k ≥ y(a∗)

k , ∀k 6= j. When gij = 1, we have

x
(a∗+1)
i = ψ

x(a∗)
j +

∑
k 6=j

gikx
(a∗)
k +

∑
l∈L

x
(a∗)
l


= ψ

ψ
x(a∗−1)

i +
∑
k 6=i

gjkx
(a∗−1)
k

+
∑
k 6=j

gikx
(a∗)
k +

∑
l∈L

x
(a∗)
l


≥ ψ

ψ
x(a∗−1)

i +
∑
k 6=i

gjkx
(a∗−1)
k

+
∑
k 6=j

gikx
(a∗)
k +

∑
l∈L

x
(a∗−1)
l


≥ ψ

ψ
y(a∗−1)

i +
∑
k 6=i

gjky
(a∗−1)
k

+
∑
k 6=j

giky
(a∗)
k +

∑
l∈L

y
(a∗−1)
l


≥ ψ

ψ
y(a∗−1)

i +
∑
k 6=i

gjky
(a∗−1)
k +

∑
l∈L

y
(a∗−1)
l

+
∑
k 6=j

giky
(a∗)
k

 = y
(a∗+1)
i .

The first inequality follows from the fact that x
(a)
k is increasing in a. The second inequality follows

from x
(a)
k ≥ y

(a)
k , ∀k 6= j and a ≤ a∗. The third inequality follows from the fact that ψ′ (·) ≤ 1,

since ψ′ (·) ≤ 1

λmax

(
G+

∑
l∈L
Eil

) and the largest eigenvalue of a non-empty network is no less than 1.

Then, we show that x
(a∗+1)
i ≥ y

(a∗+1)
j . Similarly, the argument trivially holds when gij = 0.

We focus on the case of gij = 1.
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x
(a∗+1)
i = ψ

x(a∗)
j +

∑
k 6=j

gikx
(a∗)
k +

∑
l∈L

x
(a∗)
l


= ψ

ψ
x(a∗−1)

i +
∑
k 6=i

gjkx
(a∗−1)
k

+
∑
k 6=j

gikx
(a∗)
k +

∑
l∈L

x
(a∗)
l


≥ ψ

ψ
y(a∗−1)

j +
∑
k 6=i

gjkx
(a∗−1)
k

+
∑
k 6=j

gikx
(a∗)
k +

∑
l∈L

x
(a∗)
l


≥ ψ

ψ
y(a∗−1)

j +
∑
k 6=i

gjky
(a∗−1)
k

+
∑
k 6=j

giky
(a∗)
k +

∑
l∈L

y
(a∗)
l


= ψ

ψ
y(a∗−1)

j +
∑
k 6=i

gjky
(a∗−1)
k

+
∑

k 6=j,k∈Ni(G)\Nj(G)

y
(a∗)
k +

∑
k 6=i

gjky
(a∗)
k +

∑
l∈L

y
(a∗)
l


≥ ψ

ψ
y(a∗−1)

j +
∑
k 6=i

gjky
(a∗−1)
k

+
∑

k 6=j,k∈Ni(G)\Nj(G)

y
(a∗−1)
k +

∑
k 6=i

gjky
(a∗)
k +

∑
l∈L

y
(a∗)
l


≥ ψ

ψ
y(a∗−1)

j +
∑
k 6=i

gjky
(a∗−1)
k +

∑
k 6=j,k∈Ni(G)\Nj(G)

y
(a∗−1)
k

+
∑
k 6=i

gjky
(a∗)
k +

∑
l∈L

y
(a∗)
l


= ψ

ψ
y(a∗−1)

j +
∑
k 6=j

giky
(a∗−1)
k

+
∑
k 6=i

gjky
(a∗)
k +

∑
l∈L

y
(a∗)
l

 = y
(a∗+1)
j .

The last inequality comes from ψ′ (·) < 1 and the others follow the inductive conditions.

Finally, we show that x
(a∗+1)
i + x

(a∗+1)
j ≥ y

(a∗+1)
i + y

(a∗+1)
j . Note that, by the convexity of

ψ (·), for any four real numbers a, b, c, d, we have ψ (a) + ψ (b) ≥ ψ (c) + ψ (d) if a+ b ≥ c+ d and

max {a, b} ≥ max {c, d}. Therefore, to prove the inequality, we we only need to show the following

two arguments: x(a∗)
j +

∑
k 6=j

gikx
(a∗)
k +

∑
l∈L

x
(a∗)
l

+

x(a∗)
i +

∑
k 6=i

gjkx
(a∗)
k


≥

y(a∗)
j +

∑
k 6=j

giky
(a∗)
k

+

y(a∗)
i +

∑
k 6=i

gjky
(a∗)
k +

∑
l∈L

y
(a∗)
l

 ;
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max

x(a∗)
j +

∑
k 6=j

gikx
(a∗)
k +

∑
l∈L

x
(a∗)
l , x

(a∗)
i +

∑
k 6=i

gjkx
(a∗)
k


≥ max

y(a∗)
j +

∑
k 6=j

giky
(a∗)
k , y

(a∗)
i +

∑
k 6=i

gjky
(a∗)
k +

∑
l∈L

y
(a∗)
l

 ;

The first argument holds since

x
(a∗)
j +

∑
k 6=j

gikx
(a∗)
k +

∑
l∈L

x
(a∗)
l + x

(a∗)
i +

∑
k 6=i

gjkx
(a∗)
k

≥ y
(a∗)
i + y

(a∗)
j +

∑
k 6=j

giky
(a∗)
k +

∑
l∈L

y
(a∗)
l +

∑
k 6=i

g
(a∗)
jk y

(a∗)
k

by the inductive conditions. To prove the second argument, note that we have shown x
(a∗+1)
i ≥

max
{
y

(a∗+1)
i , y

(a∗+1)
j

}
. Therefore,

max

x(a∗)
j +

∑
k 6=j

gikx
(a∗)
k +

∑
l∈L

x
(a∗)
l , x

(a∗)
i +

∑
k 6=i

gjkx
(a∗)
k


≥ x

(a∗)
j +

∑
k 6=j

gikx
(a∗)
k +

∑
l∈L

x
(a∗)
l

≥ max

y(a∗)
j +

∑
k 6=j

giky
(a∗)
k , y

(a∗)
i +

∑
k 6=i

gjky
(a∗)
k +

∑
l∈L

y
(a∗)
l

 .

By the four inductive arguments,
∑
k

x
(a)
k >

∑
k

y
(a)
k for any a (the inequality is strict since for

some node k such that gki = 1 and gkj = 0, we have x
(a∗+1)
k > y

(a∗+1)
k ). Moreover, the equilibrium

choice of each agent k in network G+
∑
l∈L
Eil is limit of x

(a)
k , the aggregate activities induced by

G+
∑
l∈L
Eil is larger than that by G+

∑
l∈L
Ejl

To prove u∗
(
G+

∑
l∈L
Eil

)
> u∗

(
G+

∑
l∈L
Ejl

)
, we need the following four arguments

1. x
(a)
k ≥ y

(a)
k , ∀k 6= j;

2. x
(a)
i ≥ y

(a)
j ;

3.
(
x

(a)
i

)2
+
(
x

(a)
j

)2
≥
(
y

(a)
i

)2
+
(
y

(a)
j

)2
;

4. x
(a)
k and y

(a)
k is increasing in a for any k.
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Note that, the third argument hold since the square function is convex, and as we have shown

x
(a)
i + x

(a)
j ≥ y

(a)
i + y

(a)
j , x

(a)
i ≥ max

{
y

(a)
i , y

(a)
j

}
. �

Proof of Proposition 1: Based on Lemma 2, the remaining proof is same with that of Theorem

1. �

Proof of Lemma 3: Let 4u (t) ≡ min
G∈S(QC(t−1))\{QC(t)}

(u∗ (QC (t))− u∗ (G)) be the welfare gap

between first and second best in period t, where4u (t) = u∗ (QC (t)) if S (QC (t− 1)) = {QC (t)}.
Denote 4u= min

1≤t≤T
4u (t) as the least welfare gap during the formation process. The adjacency

matrix of complete graph is denoted by C. Note that, u∗ (C) is the maximum welfare can be

generated. Therefore, if δt+1

δt
< ε for any t,

T∑
t=1
εtu∗ (C) is the largest welfare can be obtained during

the network formation process. Furthermore, we have
T∑
t=1
εtu∗ (C) ≤ Tεu∗ (C) when ε ≤ 1. As a

result, when Tεu∗ (C) ≤4u, the social planner has no incentive to choose the suboptimum at any

period. That is, when δt+1

δt
< ε for any t, where ε ≤ 4u

Tu∗(C) , the social planner is myopic. �

Proof of Theorem 2: We introduce some notations firstly. Consider a quasi-complete network

(N,G) with t links. Suppose network G contains a complete subgraph formed by p ≥ 3 nodes

and p(p−1)
2 + 1 ≤ t ≤ p(p+1)

2 . That is, the first p agents form a complete network, the p + 1-th

player connects with first t − p(p−1)
2 players and the last n − (p+ 1) players are isolated. We use

QC (t+ 1) = G+ E
p+1,t+1− p(p−1)

2

and Ḡ (t+ 1) = G+ Ep+2,1 to denote the two nested split

networks obtained by adding a single link from G. Thus,
[
2, t− p(p−1)

2

]
∪
[
t+ 2− p(p−1)

2 , p
]

is the

set of agents those whom are in the complete subnetwork and whose neighbors are the same in

QC (t+ 1) and Ḡ (t+ 1).

Theorem 2 directly follows Lemma 4.

In the proof, we omit the term of the total links t and use QC and Ḡ to denote the two NSGs.

The proof consists of two major steps.

Step 1: Ep+1,i ·QCk ·1 ≥ Ep+1,i · Ḡ
k ·1, for any agent i ∈

[
2, t− p(p−1)

2

]
∪
[
t+ 2− p(p−1)

2 , p
]

and

any positive integer k. Moreover, 1′ ·E
1,t− p(p−1)

2
+1
·QCk · 1 ≥ 1′ ·E

1,t− p(p−1)
2

+1
·Ḡk · 1.

Note that Ei,j ·Gk ·1 is a n-dimensional vector with i-th and j-th elements being total number

of k-length paths starting from nodes i and j in network G respectively. Thus, the first statement

in step 2 is to show that, for any agent in
[
2, t− p(p−1)

2

]
∪
[
t+ 2− p(p−1)

2 , p
]
, the total number

of k-length paths starting from this agent in network QC is larger than that in Ḡ. The second

statement is to show that the sum of k-length paths from agents 1 and t − p(p−1)
2 + 1 in network

QC is larger than that in Ḡ. We adapt mathematical induction to show step 1. Denote the j-th

element of vectors QC l · 1 and Ḡ
l · 1 as ålj and ālj respectively.
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• k = 1, Ep+1,i · QC1 · 1 is a vector with i-th entry å1
i = p − 1 and p + 1-th entry å1

p+1 =

t + 1 − p(p−1)
2 and other elements å1

j = 0 for all j 6= i ∈
[
2, t− p(p−1)

2

]
∪
[
t+ 2− p(p−1)

2 , p
]

and j 6= p + 1; Moreover, ā1
i = p − 1 and ā1

p+1 = t − p(p−1)
2 . Apparently, å1

i = ā1
i and

å1
p+1 > ā1

p+1. Moreover, 1′ ·E
1,t− p(p−1)

2
+1
·QC1·1 = 1′ ·E

1,t− p(p−1)
2

+1
·Ḡ1·1 since the sum of

1’s and t+ 1− p(p−1)
2 ’s degree are identical in QC and Ḡ.

• Suppose for all k ≤ l the statements holds. That is, āli ≤ åli for all i ∈
[
2, t− p(p−1)

2

]
∪[

t+ 2− p(p−1)
2 , p+ 1

]
and āl1 + āl

t− p(p−1)
2

+1
≤ ål1 + ål

t− p(p−1)
2

+1
. For k = l + 1, we have

Ep+1,i · Ḡ
l+1 · 1 = Ep+1,i ·

(
G+ Ep+2,1

)
· Ḡl · 1 = Ep+1,i ·G · Ḡ

l · 1

=



0∑
j∈N

gp+1,j ā
l
j

0∑
j∈N

gij ā
l
j

0


≤



0∑
j∈N

gp+1,j ā
l
j + āl

t− p(p−1)
2

+1

0∑
j∈N

gij ā
l
j

0



p+1 connects with first t− p(p−1)
2

nodes
=

i belongs to the complete subnetwork



0∑
j∈
[
2,t− p(p−1)

2

]gp+1,j ā
l
j + āl1 + āl

t− p(p−1)
2

+1

0∑
j∈
[
2,t− p(p−1)

2

]
∪
[
t+2− p(p−1)

2
,p+1

]gij ālj + āl1 + āl
t− p(p−1)

2
+1

0



≤
by induction



0∑
j∈
[
2,t− p(p−1)

2

]glp+1,j å
l
j + ål1 + ål

t− p(p−1)
2

+1

0∑
j∈
[
2,t− p(p−1)

2

]
∪
[
t+2− p(p−1)

2
,p+1

]glij ålj + ål1 + ål
t− p(p−1)

2
+1

0


= Ep+1,i ·QC l · 1.
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On the other hand, by the decomposition of l-length paths

ål1 + ål
t− p(p−1)

2
+1

=
∑

j∈[2,p+1]

ål−1
j +

∑
j∈[1,p+1]\

{
t− p(p−1)

2
+1
}ål−1

j ;

āl1 + āl
t− p(p−1)

2
+1

=
∑

j∈[2,p+2]

āl−1
j +

∑
j∈[1,p]\

{
t− p(p−1)

2
+1
}āl−1

j

≤
∑

j∈[2,p+1]

āl−1
j + āl−1

p+1 +
∑

j∈[1,p]\
{
t− p(p−1)

2
+1
}āl−1

j .

By the induction condition when k = l − 1, we have ål1 + ål
t− p(p−1)

2
+1
≥ āl1 + āl

t− p(p−1)
2

+1
. �

Step 2: 1′ ·QCk ·1 ≥ 1′ ·Ḡk ·1 for all positive integer k.

• When k = 1 we have 1′ ·QC · 1 = 1′ ·Ḡ · 1 since the sum of degree of the two networks are

identical.

• When k = 2, apparently 1′ ·QC2 ·1 ≥ 1′ ·Ḡ2 ·1 since the sum of degree square of QC is

larger than that of Ḡ.

• Now we focus on the case in which k ≥ 3.

1′ ·QCk · 1 =
∑

i∈
[
1,t− p(p−1)

2
+1

]
∑

j∈[1,p+1]\{i}

åk−1
j

︸ ︷︷ ︸
total number of k-length paths of players connects with p+1

+

(
p (p+ 1)

2
− t− 1

)
·
∑

j∈[1,p−1]

åk−1
j︸ ︷︷ ︸

total number of k-length paths of players in the complete subgraph that does not connect with p+1

+
∑

j∈
[
1,t− p(p−1)

2
+1

]åk−1
j

︸ ︷︷ ︸
total number of k-length paths of p+1

= p

(
åk−1
1 + åk−1

t− p(p−1)
2

+1

)
+

(
t− p (p− 1)

2
+ 1

)
åk−1
p+1

+
∑

i∈
[
2,t− p(p−1)

2

]
∪
[
t+2− p(p−1)

2
,p+1

]
∑

j∈[1,p+1]\{i}

åk−1
j
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1′ · Ḡk · 1 =
∑

j∈[2,p+2]

āk−1
j︸ ︷︷ ︸

total number of k-length paths of 1

+ āk−1
1︸︷︷︸

total number of k-length paths of p+2

+
∑

i∈
[
2,t− p(p−1)

2

]
∑

j∈[1,p+1]\{i}

āk−1
j

︸ ︷︷ ︸
total number of k-length paths of players connects with p+1 except 1

+
∑

i∈
[
t− p(p−1)

2
+1,p

]
∑

j∈[1,p−1]\{i}

āk−1
j

︸ ︷︷ ︸
total number of k-length paths of players in the complete subgraph that does not connect with p+1

+
∑

j∈
[
1,t− p(p−1)

2

]āk−1
j

︸ ︷︷ ︸
total number of k-length paths of p+1

.

= (p− 1)

(
āk−1

1 + āk−1

t− p(p−1)
2

+1

)
+ 2āk−1

1 + āk−1
p+2

+

(
t− p (p− 1)

2

)
åk−1
p+1 +

∑
i∈
[
2,t− p(p−1)

2

]
∪
[
t+2− p(p−1)

2
,p+1

]
∑

j∈[1,p+1]\{i}

āk−1
j

By step 1 we have āki ≤ åki for all i ∈
[
2, t− p(p−1)

2

]
∪
[
t+ 2− p(p−1)

2 , p
]
, and āk1 + āk

t− p(p−1)
2

+1
≤

åk1 + åk
t− p(p−1)

2
+1

. Therefore, to prove 1′ ·QCk ·1 ≥ 1′ ·Ḡk ·1 we only need to show

åk−1
1 + åk−1

t− p(p−1)
2

+1
+ åk−1

p+1 ≥ 2āk−1
1 + āk−1

p+2.

Moreover, since

åk−1
1 + åk−1

t− p(p−1)
2

+1
+ åk−1

p+1 =
∑

j∈[2,p+1]

åk−2
j +

∑
j∈[1,p+1]\

{
t− p(p−1)

2
+1
}åk−2

j +
∑

j∈
[
1,t− p(p−1)

2
+1
]åk−2
j

2āk−1
1 + āk−1

p+2 = 2
∑

j∈[2,p+2]

āk−2
j + āk−2

1 ,

we could therefore show that

åk−1
1 + åk−1

t− p(p−1)
2

+1
+ åk−1

p+1 − 2āk−1
1 + āk−1

p+2

≥ åk−2
1 + åk−2

t− p(p−1)
2

+1
+

∑
j∈
[
2,t− p(p−1)

2

]åk−2
j − 2āk−2

p+2

≥ 0. �
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Proof of Corollary 1: The proof is clearly stated in the main text. �

Proof of Proposition 2: Bernardo M. Ábrego (2009)’s Theorem 2 and corollary 2 state that the

sum of squares of degrees in quasi-star network is strictly larger than that in other networks when

the total number of links t ∈ [4, n
2−3n

4 ), while that in quasi-complete network is the strict largest

one when t ∈ (n
2+n
4 , n

2−n
2 ]. Therefore, when t ∈ [4, n

2−3n
4 ), there exists ε1 > 0 such that

1′QS (t)QS (t) 1 ≥ 1′GG1 + ε1,

for any G with t links.

If t ∈ (n
2+n
4 , n

2−n
2 ], then there exists ε2 > 0 such that

1′QC (t)QC (t) 1 ≥ 1′GG1 + ε2,

for any G with t links.

Note that, the aggregate welfare activities of Γ (G) is given by

1

2
· 1′ (I − φG)−1 (I − φG)−1 1 =

1

2

∑
k=0

(k + 1)φk1′Gk1

Moreover,
∑
k=3

φk1′Gk1 ≤
∑
k=3

φk1′Ck1 where C is complete network formed by n players.

By mathematical induction, it is easy to show that, for any k ∈ Z+,
[
Ck
]
ii

= (n−1)k−(n−1)(−1)k−1

n

and
[
Ck
]
ij

= (n−1)k+(−1)k−1

n ∀i and j 6= i. Thus, 1′Ck1 = n · (n− 1)k.

For any network G, we have

1′ (I − φG)−1 (I − φG)−1 1 < 1′ I1+2φ1′ G1+ 3φ21′ GG1+
∑
k=3

(k + 1)φk1′Ck1

Let S =
∑
k=3

(k + 1)φk1′Ck 1 = n
∑
k=3

(k + 1)φk (n− 1)k, and thus φ (n− 1)S = n
∑
k=3

(k + 1)φk+1 (n− 1)k+1.

Then we have,

S − φ (n− 1)S = 3nφ3 (n− 1)3 + n
∑
k=3

φk (n− 1)k

= nφ3 (n− 1)3

(
3 +

1

1− φ (n− 1)

)
.

Finally, we have S =
∑
k=3

(k + 1)φk1′Ck1 = nφ3(n−1)3(4−3φ(n−1))

(1−φ(n−1))2
.

Therefore,
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1′ (I − φG)−1 (I − φG)−1 1 < 1′ I1+ 2φ1′ G1+ 3φ21′ GG1+
nφ3 (n− 1)3 (4− 3φ (n− 1))

(1− φ (n− 1))2

< 1′ I1+ 2φ1′ G1+ 3φ21′ GG1+
4nφ2 (n− 1)2

(1− φ (n− 1))2 .

The last inequality comes from the fact that 0 < φ ≤ 1
n−1 .

From
4nφ21(n−1)2

(1−φ1(n−1))2
≤ ε1, we can get φ1 ≤

√
ε1
4n

1+
√

ε1
4n

. Then, when t ∈ [4, n
2−3n

4 ), for any φ < φ1

and network G with link t,

1′ (I − φQS (t))−1 (I − φQS (t))−1 1 ≥ 1′ I1+ 2φ1′QS (t) 1+ 3φ21′ GG1+ ε1

> 1′ (I − φG)−1 (I − φG)−1 1.

Similarly, let φ2 ≤
√

ε2
4n

1+
√

ε2
4n

, we have 1′ (I − φQC (t))−1 (I − φQC (t))−1 1 ≥ 1′ (I − δG)−1 (I − δG)−1 1

for all network G with link t when t ∈ (n
2+n
4 , n

2−n
2 ]. �

Proof of Lemma 5: The proof is similar with that of Lemma 1. The agents heterogeneity just

amplifies the inequalities in the proof. �

Proof of Proposition 3: Any strategy p = (pt)
T
t=1 of Problem (7) induces a strategy of Problem

(4) s = (G (t))Tt=1. Therefore, the “if” part directly holds.

Meanwhile, for any optimal strategy s∗ = (G∗ (t))Tt=1 of Problem (4), we can construct a

strategy p = (pt)
T
t=1 of Problem (7) inducing a same sequence of networks (G∗ (t))Tt=1. Specifically,

let pt = i, where G∗ (t+ 1) = G∗ (t) + Eij and Ni (G (t)) ⊆ Nj (G (t)). That is, if G∗ (t+ 1)

is obtained by connecting agents i, j and i’s degree is no larger than j, then pt = i. We argue

that, agent i will connects agent j to maximize his own utility. According to König et al. (2014)’s

Proposition 1 (ii), agent i will connects the agent with highest (possible) degree. It is agent j since

otherwise G∗ (t) +Eij can not be an NSG. The “only if” part has been verified. �
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